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Abstract

In this paper, we study the integer solutions of the following equation that is so called the Jin-
Schmidt equation,

AX? 4+ BY?*+CZ*=DXYZ +1,

where (X,Y, Z) = (L4, Lj, L), with 4, j, k > 1 such that L;, L; and L;, represent terms in the
Lucas sequence that is defined by the relation Lo =2, L1 =1, Lny1 = Ln + Lp—1 withn > 1.
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1 Introduction

Suppose that f is an equation with the variables z1, z2, ..., z, and n > 2, then,

flz1,29,...,2,) =0,

is called a Diophantine equation if the unknowns are integers. Here, we recall some well-known
Diophantine equations, for example, the Fermat’s equation,

xn + y'fl, — Z’n7

has no positive integer solutions x and y with n > 2. In fact, the elliptic curve equation is an
important Diophantine equation, that has the form,

Y2+ arzy + agy = 2° + aa® + aux + ag,
where ay, ..., as € C and the discriminant A, is given by:

A = =378 — 874 — 27795 + 9727476

Y2 = CL% + 4@2,

V4 = 2a4 + aya3,

Y6 = a% + 4ag,

2 2 2
V8 = ajae + 4azae — a1azas + azaz — aj.

The elliptic curve equation has many applications especially in cryptography and other fields in
mathematics and sciences as it was applied by Al-Saffarin [1,2]. Another well known Diophantine
equation is known as the Markoff equation, that has the form,

X2 4Y?4+ 72?2 =3XY_Z, (1)

where X, Y and Z are positive integers, with X < Y < Z. This equation were studied by the
scientist Markoff in the year of 1879-1880 [11, 12] as he found that the set of its solution is as
follows:

(X,Y,Z) e {(1,1,1),(X,Z,3XZ - Y), (Y, Z,3Y Z — X)}.

This set gives an infinite number of solutions, called Markoff triples. Markoff showed that there is
one-to-one correspondence between the Markoff triples and the indefinite quadratic forms with

1
minimal greater than - /A1, where A; is the discriminant of the indefinite quadratic forms. This

equation was also expanded and studied by the scientist Rosenberger [14] in 1979, which has the
form,

AX? 4+ BY?+ BZ?> = DXY Z, (2)
where
(A)B)C?D) e{(1727376)7(17 1? 173)7(17 1? 17 )7(1? 1?2) )7(1? 17575)7(1? 1727 )}7

with A, B,C, D € N and gcd(A, B) = ged(A,C) = ged(C,D) = 1and A, B,C \ D. Rosenberger
named this equation as Markoff-Rosenberger equation and showed that it has infinitely many so-
lutions. After that, the scientists Jin and Schmidt studied the following expansion of the Markoff-
Rosenberger equation (called by the Jin-Schmidt equation) in 2001 [8] such that X,Y,Z € N :

AX? 4+ BY? 4+ CZ? = DXYZ + 1, (3)
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where they noticed that (3) has infinitely many solutions only with,
(A,B,C,D) €{(2,1,2,2),(2,2,3,6), (3,1,6,6), (5,1,5,5), (6,10, 15, 30), (7,2, 14, 14), (1, m, m, 2m)},

where m is positive integer. In case of (4,B,C,D) = (2,2,3,6), the equation has many appli-

cations. For example, it is connected to the constant for quaternions and constants for complex
1

numbers on the circle {t eC||t|= } the field Q(+/—3). In fact, recently many authors have

V2

made Diophantine equations more interesting by studying their solutions in special linear recur-
rence sequences, that are defined as follows.

Assume that {W,,} is a sequence of the form,
Whtd = aitWhnipa—1 + aaWehpa—o + ...+ agWh, 4)
foralln > 0and a1, as,...,aq € C with ag # 0 (where d is the order of the sequence).

The sequence (4) is called a binary linear recurrence sequence if d = 2, and it is also called a
ternary linear recurrence sequence if d = 3. An example of a binary linear recurrence sequences
is the Fibonacci sequence that is defined by,

Fn:Fn71+an2;

withn > 2, Fy = 0, F; = 1. For all n > 0, the terms of {F,,} can be obtained by the following
Binet’s formula:

at —pr 1+v5 1-+5
Fn = T—/B’ where (O[,ﬂ) = ( B s B) ) .
Note that « is called the golden number and 3 = _—1 Another example of a binary linear recur-

a
rence sequence is the Lucas sequence that is defined by,

Ly=1Lp_1+ Ln727
where Ly = 2, L1 = 1, and n > 2. The terms of {L,,} can be obtained by thy Binet’s formula [13]:

L,=a"+p" Vn>0. (5)

The terms of Lucas sequence satisfy the identity,
a1 < L, <a™! holds forall n > 1. (6)
The terms of {F,,} and {L,} satisfy the equation,
L} =5F? +4. (7)

In the late of 19th century, the French scientist, Edouard Anatole Lucas [10] around the year 1842—
1891 introduced the Lucas sequence, which was named after him. The Lucas sequence is consid-
ered as the Fibonacci sequence except with different initials. They both are represented by the

14+5

are linked by common properties. This sequence has a great application in the Lucas-Lehmer test,
that is used to discover and verify large prime numbers [3].

same golden ratio o = . Through this relationship, it becomes clear that both sequences
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A well known example of the ternary linear recurrence sequences is so called by the Tribonacci
sequence that’s defined by,

T,=T, 1+Th 2+ Tn73a

where Ty = 0,7, =15 = 1 foralln > 3.

Indeed, the solutions to Diophantine equations in linear recurrence sequences is the main of
interest for many researchers. In the following, we recall some such results starting with the result
of Hashim [5] in which he solved the following equation completely:

1 = Vi1 (P, Q1)

k )
Va(P2,Q2) = T
where {V,,(P,Q)} denotes the Lucas sequence of the second kind for certain nonzero relatively
prime integers P and (). Also, Hashim and Tengely [6] solved certain Diophantine equations
represented by reciprocals of Lucas sequences.

An important example of these interesting studies concerning Markoff equation and its gen-
eralization was initiated in 2018 by Luca and Srinivasan [9] for studying the relationship be-
tween Diophantine equations and linear recurrence sequences by determining the solutions of
the Markoff equation in Fibonacci sequence. Namely, they determined the solutions of (1) where
X,Y,and Z belong to the Fibonacci sequence.

Another interesting study was given by Tengely [16] in 2020 in which he investigated the so-
lutions of (2) where the unknowns are Fibonacci numbers. One more important study was given
by Hashim and Tengely [7] in 2020 in which they investigated the solutions of (3), where X, Y
and Z are terms in Fibonacci numbers and

(A,B,C,D)eT=1{(2,2,3,6),(2,1,2,2),(3,1,6,6), (5,1,5,5), (6,10, 15,30), (7,2, 14, 14) }.

In this article, we study the solutions of (3), (namely the Jin-Schmidt equation) where
(X,Y,Z) = (L;, L, L) with ¢, 5,k > 1. That would be studying the solutions of the following
equations:

202 4+ 2L% + 3L% = 6L;L;Ly + 1, (8)
2L7 4+ L3 + 2L} = 2L;L;Ly, + 1, (9)
3L + L% + 6L = 6L;L;Ly + 1, (10)
BL? + L2+ 5L = 5L;LyLy + 1, (11)

6L? +10L2 +15L% = 30L;L; Ly + 1, (12)
TL? +2L2 +14L} = 14L;L; Ly + 1, (13)

with i, j,k > 1.

2 Main Approach

In this section, we present the main approach for solving the Jin-Schmidt equation (3) com-
pletely, where (X,Y, Z) = (L;, L;, L) with 4, j, k > 1. Our main approach is based on solving the
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Jin-Schmidt equation for each (A, B,C, D) € T (i.e (8)-(13)) by considering all the possible cases
X<Y<ZX<ZLY,Y<X<ZY<Z<X,Z<X<KY,Z<Y <X. Solving the Jin-
Schmidt equation completely at certain (A, B, C, D) requires solving itat all the cases X <Y < Z,
X<Z<Y,Y<X<ZY<Z<X,Z<X<Y,Z<Y <X, where(X,Y,Z)=(L;,L;,L)
with ¢, 7,k > 1. In fact, without loss of generality, the condition (L; < L; < L) with 4,5,k > 1
means ¢ < j < k. So, if we first obtain the solutions of the equation,

AL} + BL? + CL} = DL;L;Ly, + 1, (14)

with (k > j > ¢ > 1), then for simplicity, the other cases are solved by considering the latter
equation with permuting the components of the first three components in (A, B, C, D). So, the first
step is obtaining all the distinct equations of (3) by the permutation of the first three components
in each of the tuples (A, B, C, D) € T. We denote each of these distinct equation by,

aL? +bL? 4 cLi = dL;L; Ly + 1, (15)
with1<i<j <k
In the following, we give the main steps for determining the solution (L;, L;, Lj,) with 1 <4 <
J < kof (15).
Step 1: We determine an upper bound for ¢ in (15). We reformulate it as the following;:

al? + bL? 1

By substituting (5) in L;, L;, and Ly, in (16), we get that,

al? + bL? 1

cak —da'7 = + — —cB*¥ +d(a’f7 + I B + BH). (17)
Ly, Ly,

From inequality (6) and 1 < i < j < k; (or,1 < L; < L; < L), we get the inequality,

al? +bL? L? ik .
< (a+b)-L < (a+b)a¥F < (a+b)ad, (18)
Ly, Ly,
< J
ol = 1<, (19)
|—cB¥| = |ca™| < ca™ < cad, (20)
|d(a’B? + o7 B* 4 B'17)| < d(207 + 1) < 3da. (21)
Taking the absolute values to (17) and plugging (18)—(21) into the right hand side of
(17), we get that,
|ca® —da"| < (1+a+b+c+3d)a’. (22)
Multiplying (22) with i leads to,
oh=i=i = 4 o ﬁ (23)
I

1
such that h = E(l + a+ b+ c+ 3d). We assume that,

min
nez

d
Oén—‘:Bl>07
Cc

1001



Q. N. Alabrahimi and H. R. Hashim Malaysian J. Math. Sci. 19(3): 997-1017(2025) 997 - 1017

Step 2:

Step 3:

Step 4:

1002

s0, inequality (23) will be,

al < —.
By

Hence, we get the upper bound of i as follows,

i < ﬁféﬂ 1 (24)

where [ is a positive integer.

We next obtain for k — j in (15) an upper bound. Since the first three components of
every tuple (a,b,c,d) of (15) are obtained from the permutations of (A, B, C) in the
tuples of the set 7. As 15 > a,b,c > 1land 30 > d =D > 1, thend/c € {1,2,3,5,6,7}
and this implies that 2 < 117. Hence, from (23) we have that,

o d . d 11
laF T = =] < o - 2 < nr_ 7231, as i>1
c C (67
Then,
k—i—j d
|ov | <72314 |- <72314+7<7931, as d/e<T,
which gives that,
In(79.31
k—j<i+M<l+10.
In(«)
As i < [, we obtain that,
E<j+1+9. (25)

We reduce the number of the values of i € [1,!] in (15). This is achieved by determining
the values of 4, with which the following equation has solutions for y and z,

aLZ2 +by? + ¢z —dLiyz —1 =0,

by using the SageMath software’s function solve_ Diophantine() [15].

Finally, for each ¢ remained from Step 3, we investigate the corresponding values of j
and k (with j < k < j + I + 9) with which (15) is satisfied. That would be done by
firstly writing (15) as follows:

bL? — sLj +w =0, (26)
such that s = dL; Ly, and w = aL? + cL? — 1. Also, identity (7) can be written as,
(5F)* = 5L% + 20. (27)

Because (26) is a quadratic equation, we solve it as follows:

s+ /52 — 4bw
Lj=——F—7—7—7—,
2b
which can be written as,
(2bL; — 5)? = 5% — dbw. (28)
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Multiplications of (27) with (28) gives the equation,
Y2 = (5X74+20)(d’L2X? — 4b(aL? 4 cX? — 1)), (29)
with Xy = Ly and Y7 = 5F(2bL; — dL;Ly). Equation (29) is an elliptic curve equation

that can be solved using the Magma software [4] with the function
SIntegralljunggrenPoints (). Indeed, (29) can be written in the form,

V=4 X +BX;+C. (30)

So, to calculate the points of (30), we use the Magma software with the function
SIntegralljunggrenPoints([1, A1, By, C1],[]).

From every obtained solution (L;, L;, Li) of (15), we acquire the corresponding solutions
(X,Y,Z) = (L;,Lj, L) of (14) by comparing the positions of the components (a,b, c,d) and
(A, B,C, D), respectively.

3 Main Results

Suppose that S is the set of all distinct tuples obtained by the permutation of components A, B
and C in each of the tuples of T'.

Theorem 3.1. If (a,b,¢,d) € S and,

ol — =
c

#0,

then By > 0.145. Moreover, if X = L;, Y = Ljand Z = Ly with 1 < i < j < k is a solution of (3),
theni < 13and j < k < j + 22.

B; = min
Iez

Proof. At the beginning, we want to prove the value of B; > 0.145. From the set S, we get
djfc €{1,2,3,5,6,7}. Incase of I = 0 and By # 0, we have that d/c € {2,3,4,5,6,7}. Therefore,

2
B; > 1. Now, we assume that I < —1,thenof < a™! = —= . So B; > 0.381. Also, if I > 5,

1+5

d
then o® > 11.09. Therefore, By > 4.09. If I = 1, then B; = min;—; ‘al - ’ > |a' —2| > 0.381.
c

NOW, if I = 2, then Bl = min1:2

d
a? — C’ > |a? — 3| > 0.381. Also, if I = 3, then

d
a® > |a® — 5| > 0.763. Also, for I = 4, we get

B1 = HliIlI:3 - =
c

B1 = minI:4

d
at — ‘ > |a* — 7| > 0.145. Based on the above and for all I € Z, then
¢

d
B, = minjez [of — —| > |a4 - 7| > 0.145. Now, we want to prove the last part of the Theorem.
C

Using the value of By > 0.145 in inequality (24), we get the following:

1n(ll?)
< |05/

In(«)

Therefore, i < 13. Finally, from the inequality (25) and the condition 1 < ¢ < j < k, we get
J<k<j+22 O
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Theorem 3.2. If (X,Y,Z) = (L;, Lj, L) is a solution of (3) where (A, B,C,D) € T, the following
table shows the complete set of its solutions:

Table 1: The complete solutions of (3) in { L, }.

Eq. | (ABCD) {(X,)Y,Z)}

) | (2,2,3,6) {(1,1,1),(1,7,3),(1,7,11),(7,1,3),(7,1,11)}
9) | (2,1,2,2) {+

(10) | (3,1,6,6) {(1,4,1),(1,4,3),(7,4,1)}

(11) | (5,1,5,5) {

(12) | (6,10,15,30) | {(1,1,1),(1,7,3),(1,7,11), (4,1,1), (4,1,7), (4,11,1)}
(13) | (7,2,14,14) 0

Proof. We follow the steps used in the Main Approach (Section 2) and Theorem 3.1 to obtain the
solutions of (3) given in Theorem 3.2 and prove them.

Case 1: Suppose that (A4, B,C, D) = (2,2,3,6). Using permutations of the coefficients of (8),

1004

we get the equations:

2L7 + 2L7 + 3L}, = 6L;L; Ly + 1, (31)
2L7 +3L3 + 2L} = 6L;L; Ly, + 1, (32)
3L +2L3 +2L7 = 6L;LjLy + 1, (33)

where 1 < i < j < k. From Theorem 3.1, we get that i < 13and k — j < 22 inall
equations. Let us consider (31). We want to find (L;, L;, Ly) with 1 < ¢ < 13 and
Jj < k < j+ 22 with which (31) is satisfied. We first follow Step 3 for eliminating the
values of i to get that i € {1, 4} such that,

2L +2y° + 322 —6Lyyz — 1 =0,
is solvable. If i = 1 and j < k < j 4 22, then,
2LF — 6Ly L; +3L; +1=0.

The latter equation is a quadratic equation with respect to j. Now, we follow Step 4, to
find the values of j. We first substitute the value of i = 1 and (a,b,¢,d) = (2,2,3,6) in
the elliptic curve (29) to get the values of k. Then, we get the values of j with

ke {j,...,.J +22}. For i = 1, we have the elliptic curves,

Y = 60X7 +200X7 — 160, (34)
Y2 = 60X] —280X7 + 160. (35)

With the Magma function SIntegralljunggrenPoints (), we solve the above equa-
tions. We are indeed interested in the values of X as X; = L. For (34), we get that
X1 € {£1,+2,+11}. But we notice that +2, —1,—11 ¢ {L,} for all n > 1. For (35), we
get X; € {£2,£3}. Also +2,-3 ¢ {L,} for all n > 1. Finally, from (34) and (35), we
get that L, € {1,3,11}. If L, = 1, then k¥ = 1. Now, we want to find the values of j
from the value of j < k < j + 22 as follows:

o If k = j, then j = 1. Therefore, (L;, L;, L) = (L1, L1,L1) = (1,1,1) and this
triple satisfy (31).
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e If j+1<k<j+22 thenj < 1, which contradicts 1 =i < j < k.
But if Lj, = 3, then k = 2. Similarly, we get the values of j as follows:
o If k = j, then we get that j = 2. Therefore, (L;, L;, Ly) = (L1, L2, L2) = (1, 3,3)
and this triple does not satisfy (31).
e If k = j+1,thenj = 1. Hence, (L;,Lj, L) = (L1,L1,L2) = (1,1,3) and
(1,1, 3) does not satisfy (31).
e Finally,if j+2 < k < j+22, then j < 1. Thisisnot possiblesince 1 =14 < j < k.
Lastly, if Lj, = 11, then k£ = 5. Hence,
o If k = j, then j = 5. Thus, (L;,L;, L) = (L1, Ls, Ls) = (1,11,11) and (31) is
not satisfied at this triple.
o If k = j+ 1, then j = 4. Therefore, (L;, L;, L) = (L1, L4, Ls) = (1,7,11) and
this triple satisfy (31).
o If k = j + 2, then j = 3. Hence, (L;, L;, L) = (L1, L3, Ls) = (1,4,11) and
(1,4,11) does not satisfy (31).
o If k = ] + 3, thenj = 2. SO, (Li,Lj,Lk) = (Ll,LQ,L5) = (1,3,11) and this
triple does not satisfy (31).
o If k = j +4, then j = 1. Subsequently, (L;, L;, L) = (L1, Ly, Ls) = (1,1,11)
and (31) does not hold at this triple.
e Finally, in case of j +5 < k < j + 22, we get j < 1. This is not possible since
j=zi> 1
The same step can be applied in case of i = 4 with k € {j,...,j + 22} such that j > 4
(since 4 =i < j < k). By substituting the values of L; = Ly = 7 and
(a,b,¢,d) = (2,2,3,6) in (29), we get,

Y = 8700X7 + 30920X7 — 15520, (36)
Y2 = 8700X} — 38680X7% 4 15520, (37)

with X7 = Ly and Y7 = 5Fy(4L; — 42Ly,). For (36), we obtain that X; € {£11}. We get
that Xy € {£2, £3} for (37). But, we notice that +2,+£3,—11 ¢ {L,,} for all n > 4 since
4 =i < j < k. Therefore, we have that only L, = 11, then k = 5. Now, we investigate
the values of j with j <k < j 4 22 as the following:
o If k = j, then j = 5. Hence, (L;, L;, L) = (L4, Ls, Ls) = (7,11,11) and (31) is
not satisfied at this triple.
o If k =j+1,then j = 4. However, (L;, Lj, Ly) = (L4, L4, L5) = (7,7,11) is not
satisfying (31).
e Finally, if k € {j +2,...,7 4+ 22}, then j < 3. It is not possible since j > i = 4.
Now, we consider (32) and by Theorem 3.1, we obtain ¢ < 13 and k —j < 22. We follow
Step 3 to eliminate the values of . We obtain,

2L? 4+ 3y* + 222 — 6Liyz — 1 =0,

is solvable only with ¢ € {1,4}. Next, we follow Step 4 to get values of j and k. For
i = 1, we get the elliptic curves,

Y = 60X] + 180X7 — 240, (38)
Y = 60X} — 300X7 + 240. (39)
For the curve (38), the possible values of X, that represent Lucas numbers are given
by X; = 1. Also, with respect to the curve (39), we get that X; € {1,7}. Therefore,

L € {1,7}. If L, = 1, then k = 1. Now, we can find the values of j from j < k < j+22
as follows:
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o If £ = j, then j = 1. Therefore, (L;, L;, L) = (1,1,1) and this triple satisfy
(32).

e Finally, we get j < lincaseof j +1 < k < j+22, then it is not possible because
1=i<j<k.

Lastly, if L, = 7, then k& = 4. Hence,

o If k = j, then j = 4. Subsequently, (L;,L;,Ly) = (L1, L4,Ls) = (1,7,7) and
(1,7,7) does not satisfy (32).

o If k =j+1,thenj = 3. But, (L;, L, Ly) = (L1, L3, Ls) = (1,4,7) this triple
does not satisfy (32).

o If k = j+ 2, then j = 2. Therefore, (L;, L, Ly) = (L1,L2,Ls) = (1,3,7) and
(32) is satisfied at this triple.

o If k = j+ 3, then j = 1. Subsequently, (L;, L;, L) = (L1, L1, Ls) = (1,1,7)
and this triple does not satisfy (32).

e Finally,if j +4 <k =4 < j+ 22,50 j < 1. This is not possible because j > 1.

Now, we get the following curves in case of i = 4:

Y2 = 8700X7 + 28980X7 — 23280, (40)
Y2 = 8700X7} — 40620 X7 + 23280. (41)

For the curve (40), the possible values of X}, that represent Lucas numbers are given
by X; = 1. For the curve (41), we get that X; = 2. Therefore, L;, € {1,2}. which gives
that k£ < 1, this is a contradiction as 4 = i < j < k. Then (32) has no solution when
1 =4.

Now, we study (33) and by Theorem 3.1, we getthat1 <4 < 13and j < k < j+22. From
Step 3, we achieve that i € {1,2,5}. Following the elliptic curve approach explained in
Step 4 in case of i = 1, we obtain the equation,

VY = 100X7 + 320X} — 320, (42)
Y2 = 100X} — 480X7 + 320, (43)

with X1 = Ly and Y7 = 5Fk (4L; — 12Ly). From (42) we get that X; € {£1} and from
(43) we obtain that X; € {£2}. But —1,+2 ¢ {L,} for all n > 1. Therefore, we only
have X; = L; = 1, that gives k£ = 1. In the following, we investigate the values of j
such that j < k < j 4 22.
o If k = j, then j = 1. Subsequently, (L;, L;, L;) = (1,1, 1) is a solution to (33).
e Incaseof j +1 < k=1<j+22, then j < 1, which is not possible as j > 1.

Similarly, for i = 2, we obtain the elliptic curves,

Y2 = 1540X7} 4 5120X7 — 4160, (44)
Y2 = 1540X7 — 7200X7 + 4160. (45)

We have that X; € {£1} for (44) and X, € {£2,+£7} for (45). We notice that only
7e{L,}foralln > 2. If L, = 7, then k = 4. Now, we want to find the values of j from
j <k <j+22as follows:

o If k = j, then j = 4. We get that (L;, L;, L) = (L2, L4, Ls4) = (3,7,7) and this
triple does not satisfy (33).

o If k = j+ 1, then j = 3. Hence, (L;,L;,Ly) = (Lo, L3, Ls) = (3,4,7) and
(3,4, 7) does not satisfy (33).
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Case 2:

o If k = j+ 2, then j = 2. Therefore, (L;, Lj, Ly) = (L2, L2, Ls) = (3,3,7) and
(33) does not hold at this triple.
e Finally, if k € {j + 3,...,j + 22}, then j < 1. This is not possible because
2=i<j<k
If i = 5, using the same way to find X = Ly, we get that X; € {+1,£2, £7}. We notice
that of these values of Ly lead to k < 5, and this is a contradiction since 5 =i < j < k.
Therefore, (33) has no solution.

By gathering all of the obtained solutions of (31)-(33) with permuting their compo-
nents so that they satisfy (8), we get the solutions of (8) as follows:

(Li, Ly, Ly,) € {(1,1,1),(1,7,3),(1,7,11),(7,1,3), (7,1, 11)}.

If (A,B,C,D) = (2,1,2,2). We obtain the distinct equations for (9) by permuting the
coefficients of (9). That leads to the following equations:

2L7 + L3 + 2L} = 2L;L; L + 1, (46)
L +2L3 + 2L = 2L;L; Ly, + 1, (47)
2L7 4+ 2L3 + Lj = 2L;L;Ly, + 1, (48)

where, 1 < i < j < k. From Theorem 3.1, we get that¢ < 13and j < k < j 4+ 22inall
of (46)—(48). Now, we consider the solutions of (46). By Step 3, we have that,

2L?+y2+z2—2Liyz—1:0,

can be solved with respect to y and z only with ¢ = 3. By Step 4, we substitute
L;=Ls=4and (a,b,c,d) = (2,1,2,2) in (29), we get that,
Y2 = 280X} + 500X7 — 2480, (49)
Y = 280X{ — 1740X7] + 2480. (50)
Equation (49) has no integer solutions and X; € {+2} is the X-coordinate of the so-

lutions of (50). But, we notice that £2 ¢ {L,} for all n > 1. Therefore, (46) has no
solution.

Also, we study the solutions (47). We follow Step 3 to eliminate the value of ;. We have
that,

L? + 2% 4222 —2L;yz — 1 =0,

is solvable only with ¢ = 2. Next, we follow Step 4 to get values of j and k. For i = 2,
we get the elliptic curves,
Y = 100X} + 80X7 — 1280, (51)
Y2 = 100X} — 720X} + 1280. (52)
For the curve (51), the possible values of X, that represent Lucas numbers are given by

X1 = 4 and (52) has no Lucas numbers solutions. Therefore, we get that only L, = 4,
then k£ = 3. Now, we want to find the values of j from j < k < j + 22 as follows:

o If k = j, then j = 3. So, (L;, Lj, L) = (L2, L3, L3) = (3,4,4) and (47) is not
satisfied at this triple.
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o If k = j+ 1, then j = 2. Therefore, (L;,Lj, L) = (L2, L2, L3) = (3,3,4) and
(47) is not satisfied at this triple.
o If j +3 <k=23<j+ 22, thenj <1, which is not possible since j > 2.

Finally, we study the solutions of (48). By Step 3, we obtain that,
2L12 +2y% 4+ 2% — 2Lz — 1 =0,
has a solution only at i = 3. If i = 3, we get that the elliptic curves,

Y2 = 280X — 120X7 — 4960, (53)
Y2 = 280X7 — 2360X7 + 4960. (54)

Equation (53) has no integer solutions and X; € {£2 =+ 3} is the X-coordinate of the
solutions of (54). But, we notice that +2,4+3 ¢ {L,,} for all n > 3. Therefore, (48) has
no solution. In the end, we notice that (46)—(48) do not have solutions. Therefore, (9)
has no solution.

Case 3: If (A, B,C, D) = (3,1, 6,6). We obtain the distinct equations for (10) by permuting the
coefficients of (10). That leads to the following equations:

L2 + L2 + 6L} = 6L, L; Ly + 1, (55)
L2 4+3L% + 6L} = 6L L;Ly, + 1, (56)
L? +6L% +3L} = 6L;L;Ly + 1, (57)
6L? + L2 + 3L} = 6L, L; Ly + 1, (58)
6L2 +3L2 + L3 = 6L, L; Ly + 1, (59)
3L+ 6L% + L} = 6L,L; Ly, + 1, (60)

where, 1 < i < j < k. From Theorem 3.1, we get that ¢ < 13and k — j < 22 in all
(55)—-(60). Now, we study the solutions of (55). By Step 3, we get that,

3L2 + 9% +622 —6Liyz —1=0,

is solvable only at ¢ € {1,4, 7}. By Step 4, if i = 1, we substitute { = 1 and
(a,b,c,d) = (3,1,6,6) in (29), we get that,

Y2 = 60X + 200X; — 160, (61)
Y2 = 60X} — 280X} + 160. (62)

We obtain that X; € {£1,£2,+11} assolutions for (61) and X; € {£2, +3} as solutions
for (62). We notice thatonly 1,3,11 € {L,,} foralln > 2. If L = 1, then k = 1. Now,
we want to find the values of j from j < k < j + 22 as follows:
o If k = j,thenj = 1. So, (L;,L;, L) = (L1,L1,L1) = (1,1,1) and this triple
does not satisfy (55).
e Incaseof j +1 <k =1<j+ 22, wehave that j < 1. This is not possible since
l=i<j<k.
If L, = 3, then k = 2. From j < k < j + 22, we get the values of j as follows:
o If k= j, thenj = 2. SO, (Li,Lj,Lk) = (Ll,LQ,Lg) = (1,3,3), and (1,3,3) does
not satisfy (55).
o If k = j+ 1, then j = 1. Therefore, (L;, L, Ly) = (L1,L1,L2) = (1,1, 3) and
(55) does not hold at this triple.
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o If j+2<k=2<j+22,thenj < 1. Itis not possible since 1 =i < j < k.
If L, = 11, then k = 5. So, the values of j are obtained as follows:

o If k = j, thenj = 5. So, (L;, L;, L) = (L1, Ls, Ls) = (1,11,11) and this triple
does not satisfy (55).

o If k = j+1,then j = 4. Therefore, (L;, L;, L) = (L1, L4, Ls) = (1,7,11) and
this triple does not satisfy (55).

o If k = j+ 2, then j = 3. Thus, (L;,L;,Ly) = (L1, L3, Ls) = (1,4,11) and
(1,4,11) does not satisfy (55).

o If k = j+ 3, then j = 2. However, (L;, L;, Ly,) = (L1, Lo, Ls) = (1,3,11) does
not satisfy (55).

o If k =j+4,thenj =1 So, (L;,L;, L) = (L1,L1,L5) = (1,1,11) and (55)
does not hold at this triple.

o If j+5<k=05<j+22 thenj < 1. Itis not possible since j > 1.

Fori = 4,7, we find that X; = Lj € {£1,4+2} when i = 4, and X; = L; € {£1,+2}
when i = 7. However, the corresponding values of Ly, lead to £ < 1, and this is a con-
tradiction since 4,7 = i < j < k. Then, (55) has no solutions ati = 4, 7.

Now, we consider the solutions of (56). By Step 3, we get that,
L? 4+ 3y* + 62> —6L;yz — 1 =0,
has solutions with ¢ € {1, 3}. If i = 1, we have the elliptic curves,
Y2 = —180X} — 720X%, (63)
Y? = —180X{ + 720X7. (64)

Equation (63) has no integer solutions, and X; € {£2} is the X-coordinate of the solu-
tions of (64). But, we notice that +2 ¢ {L,, } foralln > 1, therefore, (56) has no solution
ate=1.

For ¢ = 3, we obtain the elliptic curves,
Y2 = 2520X7 + 9180X7 — 3600, (65)
Y2 = 2520X} — 10980X7 + 3600. (66)

Equation (65) has no integer solutions and X; € {0, £2, +3} is the X-coordinate of the
solutions of (66). But, we notice that 0, £2,+3 ¢ {L,} for all n > 3. Therefore, (56)
has no solution when ¢ = 3.

Now, we study the solutions of (57). We follow Step 3 to eliminate the values of i. We
obtain the equation,

L7 +6y* +32%2 —6L;yz — 1 =0,

is solvable only with i € {1,3}. Next, we follow Step 4 to get values of j and k. For
i = 1, we get the elliptic curves,

Y2 = —180X} — 144X 2, (67)
YZ = —180X{ + 144X7. (68)
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Equations (67) and (68) have no integer solutions. Therefore, (57) has no solution
when i = 1.

Now, for i = 3, we get the elliptic curves,

Y7 = 2520X7 + 216 X7 — 1440, (69)
Y2 = 2520X} — 3816 X7 + 1440. (70)

Using the same way to find X; = Ly, we have that only X; € {£1}. For Ly = 1, so
k = 1. But, we noticed that k = 1. This is a contradiction as 3 = i < j < k. Therefore,
(57) has no solution when i = 3.

Also, we study the solutions of (58). We follow Step 3 to eliminate the values of i, we
obtain the equation,

6Lf + 9% +322 —6Liyz—1=0,

is solvable only with i € {1,2,5,7,8}. Next, we follow Step 4 to get values of j and k.
For i = 1, we get the elliptic curves,

Y7 = 120X + 380X7 — 400, (71)
Y2 = 120X} — 580X7 + 400. (72)

With the Magma function SIntegralljunggrenPoints(), we solve the above equa-
tions. We are indeed interested in the values of X; as X; = L. For (34), we get that
Xy € {£1,£5,£29} for (71) and X; € {0,42,+3,£7} for (72). We notice that only
1,3,7,29 € {L,} for all n > 1. Therefore, L), € {1,3,7,29}. If L, = 1, then k = 1. Now,
we want to find the values of j from j < k < j + 22 as follows:
o If k = j, thenj = 1. So, (L;, L;, L) = (L1, L1, L) = (1,1, 1) does not satisfy
(58).
e Incaseof j+1 < k < j+22,thenj < 1. Thisisnot possiblesincel =4 < j < k.
If L, = 3, then k = 2. From j < k < j + 22, we get the values of j as follows:
o If k = j, then j = 2. Therefore, (L;, L;, L) = (L1, L2, L2) = (1,3,3) and this
triple does not satisfy (58).
o If t = j+ 1, then j = 1. Therefore, (L;, L;, L) = (L1,L1,L2) = (1,1, 3) and
this (1, 1, 3) does not satisfy (58).
o If j+2 <k <j+ 22, thenj < 1. Itis not possible since 1 =¢ < j < k.
If L, =7, then k = 4. So, the values of j are obtained as follows:
o If k = j,thenj =4. So, (L;,Lj, L) = (L1, L4, Ls) = (1,7,7) which does not
satisfy (58).
e If k = j+ 1, then j = 3. Therefore, (L;,Lj, L) = (L1, L3, Ls) = (1,4,7) and
(1,4,7) satisfy (58).
o If k = j+ 2, then j = 2. We obtain that (L;, L;, Ly) = (L1, Lo, Ls) = (1,3,7)
and this triple does not satisfy (58).
o If k = j+ 3, then j = 1. However, (L;, L;, L) = (L1, L1, Ls) = (1,1,7) does
not satisfy (58).
o If j+4<k=4<j+22,thenj < 1. This is not possible since 1 =i < j < k.
If Li, = 29, then k£ = 7. Now, we study the values of j :
o If k =j,thenj="7. So, (L;, L;, L) = (L1, L7, L7) = (1,29, 29) which does not
satisfy (58).
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o If k =j+1,thenj = 6. But, (L;, L, Ly) = (L1, Le, L7) = (1,18,29) does not
satisfy (58).

o If k = j + 2, thenj = 5. AISO, (Li,Lj,Lk) = (Ll,L5,L7) = (1, 11,29). This
triple does not satisfy (58).

o If k = j + 3, then j = 4. Therefore, (L;, Lj, L) = (L1, La, L7) = (1,7,29) and
this triple does not satisfy (58).

o If k = j+4,then j = 3. However, (L;, L;, Ly,) = (L1, L3, L7) = (1,4,29) does
not satisfy (58).

o Ifk = ] + 5, thenj = 2. Thus, (Li,Lj7Lk) = (Ll,Lg,L7) = (1,3,29) and this
triple does not satisfy (58).

o If k = j+ 6, then j = 1. Therefore, (L;, L;, L) = (L1, L1, L7) = (1,1,29) and
this triple does not satisfy (58).

o If j+7<k=7<j+22,thenj < 1. Itis not possiblesince 1 =i < j < k.

Now, if i = 2, we get the elliptic curves,

Y2 = 1560X7 + 5180X7 — 4240, (73)
Y2 = 1560X} — 7300X7 + 4240. (74)

For the curve (73), the possible values of X, that represent Lucas numbers are given
by X; = 1. Also, with respect to the curve (74), we get that X; = 2. Therefore, we
notice that only L,, = 1 foralln > 1. So, Lj, = 1, then k& = 1. But we noticed that £ < 2.
This is a contradiction with 2 = i < j < k. Therefore, (58) has no solution when i = 2.

If i € {5,7,8}, using the same way to find X; = Ly, we get that X; € {£1,+2} ati =5,
X1 =+2ati="7and X; € {£2,£3} ati = 8. Therefore, we notice that these values of
L leads to k < 2. But, this is a contradiction since 5 < i < j < k.

Also, we study the solutions of (59). We follow Step 3 to eliminate the values of i. We
obtain the equation,

6L% +3y* + 22 —6Liyz —1 =0,

is solvable only with ¢ € {1,2,5,7,8}. Next, we follow Step 4 to get values of j and k.
For i = 1, we get the elliptic curves,

Y2 =120X{ + 180X 7 — 1200, (75)
Y2 =120X{ — 780X % + 1200. (76)

By the Magma function SIntegralLjunggrenPoints(), we get that X; = +4 for (75)
and X; = £2 for (76). We notice that 4 € {L,} foralln > 1. If Ly = 4, then k = 3.
Now, we want to find the values of j from j < k < j + 22 as follows:
o If k = j,thenj = 3. So, (L;,L;, L) = (L1,Ls, L3) = (1,4,4) and this triple
does not satisfy (59).
o If k = j+ 1, then j = 2. Therefore, (L;, L;, Ly) = (L1, L2, L3) = (1,3,4) and
(1, 3,4) does not satisfy (59).
o If k =j+2,thenj=1.So, (L;,Lj, L) = (L1, L1, L3) = (1,1,4) and this triple
satisfy (59).
o If j+3 <k <j+22thenj < 1. Itis not possible since 1 =i < j < k.
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If i = 2, we get the elliptic curves,

Y72 = 1560X7 4 3060X7 — 12720, (77)
Y2 = 1560X] — 9420X7 4 12720. (78)

For (77), we get that X; = +4, and X; = £2 for (78). We notice that 4 € {L,} for all
n > 1. If L; = 4, then k = 3. Now, we want to find of values the j from j < k < j + 22
as follows:

o If k = j, then j = 3. So, (L;, Lj, L) = (L2, L3, L3) = (3,4,4) and this triple

does not satisfy (59).
o If k = j+ 1, then j = 2. Therefore, (L;, L;, L) = (L2, L2, L3) = (3,3,4) and
(3,3,4) does not satisfy (59).

o Ifke{j+2,...,5+22}, then j < 1. This is not possible since 2 =i < j < k.
Finally, if ¢ € {5,7,8}, using the same way to find X; = Lj, we get that X; = £2 at
i=5,X1 =42ati="7and X; = +2ati = 8. But, £2 ¢ {L,} for all n > 1. Therefore,
(59) has no solution when i € {5, 7, 8}.

Also, we study the solutions of (60). We follow Step 3 to eliminate the values of i. We
obtain the equation,

3L7 4+ 6y* + 22 —6L;yz — 1 =0,

is solvable only with i € {1, 2,4, 7}. Next, we follow Step 4 to get values of j and k. For
i = 1, we get the elliptic curves,

Y2 = 60X — 960, (79)
Y72 = 60X} — 480X} + 960. (80)

By the Magma function SIntegralljunggrenPoints(), we get that X, € {£2, +4} for
(79) and X; = £2 for (80), we notice thatonly4 € {L,}asn > 1. If L, = 4, then k = 3.
Now, we want to find the values of j from j < k < j + 22 as follows:
o If k = j,thenj = 3. So, (L;,Lj, L) = (L1,Ls, L3) = (1,4,4) and this triple
does not satisfy (60).
o If k = j+ 1, then j = 2. Therefore, (L;, L, Ly) = (L1, Lo, L3) = (1,3,4) and
this (1, 3, 4) satisfy (60).
o If k =4+ 2,thenj = 1. So,wehave (L;,L;,Ly) = (L1, L1, L3) = (1,1,4) and
this triple does not satisfy (60).
o If j+3<k=3<;+ 22, thenj < 1. Itis not possible since 1 =i < j.

Similarly, for ¢ = 2, we obtain the elliptic curves,

Y = 1500X7 4 2880X7 — 12480, (81)
Y7 = 1500X7} — 9120 X7 + 12480. (82)

Equation (81) has no integer solutions and X; € {£2} is the X-coordinate of the so-
lutions of (82). But, we notice that +£2 ¢ {L,,} for all n > 1. Therefore, (60) has no
solution.

Finally, ifi € {4, 7}, using the same way to find X; = Lj, we getthatonly X; € {+2, +4}
fori =4and X; = +2fori = 7. We get thatonly 4 € {L,,} forall n > 1. So, Ly = 4,
then k = 3. This is a contradiction with 4 = ¢ < j < k. Therefore, (60) has no solution
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Case 4:

wheni=4,7.

By gathering all of the obtained solutions of (55)-(60) with permuting their compo-
nents so that they satisfy (10), we get the solutions of (10) as follows:

(Liv Lja Lk) € {(1747 1)’ (1747 S)a (7747 1)}

If (A,B,C,D) = (5,1,5,5). The distinct equations derived (11) are:
5L 4+ L3 +5L; = 5L;L;Ly + 1, (83)
L} +5L3 +5L; = 5L;LjLy + 1, (84)
5L +5L% + Lj, = 5L;L; Ly + 1, (85)

where 1 < i < j < k. From Theorem 3.1, we get that ¢ < 13and j < k < j +22inall
(83)—(85). Now, we study the solutions of (83). By Step 3, we get that,

5L? 44?4+ 522 —5L;yz — 1 =0,

is solvable only with ¢ € {1,3,4,5}. By Step 4, if i = 1, we substitute L; = 1 and
(a,b,c,d) = (5,1,5,5) in (29), we obtain that,

Y = 25X} +20X7 — 320, (86)
Y72 =25X7} — 180X7 + 320. (87)

We obtain that X; = +4 for (86) and X; = %2 for (87). We notice that only L,, = 4
forallm > 1. If Ly = 4, then £k = 3. Now, we want to find all the values of j from
j <k <j+22as follows:
o If k = j, then j = 3. Therefore, (L;, L;, L) = (L1, L3, L3) = (1,4,4) and this
triple does not satisfy (83).
o Ifk=j+1,thenj = 2. So, (L;,Lj, L) = (L1, L2, L3) = (1,3,4),and (1,3,4)
does not satisfy (83).
o If k = j+ 2, then j = 1. However, (L;, L;, Ly) = (L1, L1,Ls) = (1,1,4) does
not satisfy (83).
o If j+3 <k <j+ 22, thenj < 1. Itis not possible since j > 1.
If i € {3,4,5}, using the same way to find X; = Ly, we get that X; € {+£1,+2} for
1 =3,X1, =*+2fori=4and X; = +2 for ¢ = 5. We notice that the values of L;, leads
to k < 1. Therefore, this is a contradiction since 3 < i < j < k. Therefore, (83) has no
solution when i € {3,4,5}.

Next, we study the solutions of (84). We follow Step 3 to eliminate the values of i. We
obtain the equation,

L? +5y? + 52 —5Lyyz — 1 =0,

is solvable with i € {1,3}. Next, we follow Step 4 to get values of j and k. Fori = 1, we
get the elliptic curves,

Y72 = 375X} — 1500X7, (88)
Y2 = —375X{ + 1500X 7. (89)

Using the same way to find X; = Lj, we get that (88) has no integer solutions, and
X1 = £2 for (89). But, we notice that +2 ¢ {L,} for all n > 1. Therefore, (84) has no
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solution when ¢ = 1.

Now if i = 3, we obtain the elliptic curves,

Y2 = 1500X7 4 4500X 2 — 6000, (90)
Y2 = 1500X} — 7500X 2 + 6000. (91)

We obtain that X; = %1 for (90) and X; € {£1,£2,£7} for (91). We notice that only
L, =T7Task > 3. If L = 7, then £k = 4. Now, we want to find the values of j from
j <k <j+22as follows:
o Ifk=j,thenj=4.So0,(L;,Lj,Ly),(Ls,La, Ls) = (4,7,7) and this (4,7, 7) does
not satisfy (84).
o If k = j+ 1, then j = 3. Therefore, (L;, L;, L) = (L3, L3, L4) = (4,4,7) and
this triple does not satisfy (84).
o Ifke{j+2,...,7+22}, then j < 2, which is not possible since 3 =i < j < k.
Finally, we study the solutions of (85). By Step 3 we get that equation,

507 +5y* + 2% —5L;yz — 1 =0,

is solvable if ¢ € {1, 3,4, 5}. Now, we follow Step 4. If i = 1, we substitute L; = L; =1
and (a,b,c,d) = (5,5,1,5) in (29), we obtain that,

Y = 25X} — 300X7 — 1600, (92)
Y2 = 25X7 — 500X} + 1600. (93)

By the Magma function SIntegralljunggrenPoints (), we get that X; = £4 for (92)
and X; € {£2,+4} for (93). We notice that only L,, = 4 for all n > 1. Therefore, we
get that only L, = 4, that implies k¥ = 3. Now, we want to find the values of j from
j <k <j+22as follows:
o If k = j, then j = 3. We get that (L;, L;, Ly) = (L1, L3, L3) = (1,4,4) and this
triple does not satisfy (85).
o If k = j+1, then j = 2. Therefore, (L;, L;, Ly) = (L1, L2, L3) = (1, 3,4) which
does not satisfy (85).
o Ifk = j+ 2, thenj = 1. So, (L;,L;, L) = (L1,L1,Ls) = (1,1,4) and this
(1,1,4) does not satisfy (85).
o If j +3 <k <j+22 thenj < 1. Itis not possible since j > 1.
Similarly, for i = 3, we obtain the elliptic curves,

Y2 = 1900X7} — 300X7 — 31600, (94)
Y2 = 1900X7} — 15500X7 4 31600. (95)

Equation (94) has no integer solutions and X; € {2} is the only X-coordinate of the
solutions of (95). But, we notice that 2 ¢ {L,} for all n > 1. Therefore, (85) has no
solution at ¢ = 3.

If i € {4, 5}, using the same way to find X; = Lj, we get that X; € {£2,+4} fori =4
and X; = 4+2 with ¢ = 5. We notice that the values of L, leads to k¥ < 3 and this is a
contradiction since 4 < i < j < k. Hence, we conclude that (85) has no solution when
i €{4,5}.

As a result, we get that (83)—(85) do not have solutions. Therefore, (11) has no solution
in Lucas numbers.
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Case 5: If (4, B,C, D) = (6,10, 15, 30). The distinct equations derived (12) are:

6L7 +10L7 + 15LF = 30L; L; Ly + 1, (96)
10L7 + 6L3 +15Lj = 30L;L; Ly, + 1, (97)
6L; + 15L3 + 10L3 = 30L; L; Ly + 1, (98)
15L7 + 6L3 +10Lj, = 30L;L; Ly, + 1, (99)
10L7 + 15L3 + 6L}, = 30L;L; Ly, + 1, (100)
15L7 +10L? 4 6L; = 30L;L; Ly, + 1, (101)

where 1 < ¢ < j < k. From Theorem 3.1, we get that ¢ < 13and j < k < j + 22inall
(96)—(101). Now, we study the solutions of (96) in detail and the remainder equations
are studied in the same way. So, the details of computations for determining the com-
plete set of solutions for these equations are omitted. We follow Step 3 to eliminate the
values of i. We get that,

6L? 4+ 10y® 4 1522 — 30L;yz — 1 = 0,

is solvable only with ¢ € {1,3,7}. Next, we follow Step 4 to get the values of j and k.
For i = 1, we obtain the elliptic curves,

Y2 = 1500X7 + 5000X7 — 4000, (102)
Y7 = 1500X} — 7000X7 + 4000. (103)

We have that X; € {£1,+2,4+11} for (102) and X; € {£2,+3} for (103). We notice
thatonly 1,3,11 € {L,,} foralln > 1. If L, = 1, then k£ = 1. Now, we want to find the
values of j from j < k < j + 22 as follows:
o If k = j, then j = 1. Hence, (L;, L;, L) = (L1, L1, L1) = (1,1, 1) and this triple
satisfy (96).
e Incaseof j +1 <k =1<j+22,50j < 1. That is not possible since
1=i<j<k.
If L, = 3, then k = 2. From j < k < j + 22, we get that the values of j as follows:
o If k = j, then j = 2. But, (L;, L;, L) = (L1, Lo, L2) = (1, 3, 3) does not satisfy
(96).
o If k = j+ 1, then j = 1. Therefore, (L;, Lj, L) = (L1, L1, Ls) = (1,1,3) and
(96) does not hold at this triple.
e Incaseof j +2 < k < j+ 22, then j < 1. This is not possible since j > 1.

If L, = 11, then k = 5. In a similar way to done earlier, after determining the values of
j and k, we get no solutions to (96) other than the case where 5 = k = j + 1. Indeed,
here we get the solution (L;, L;, L) = (L1, L4, Ls) = (1,7,11). It remains to investigate
the values of j and k correspondingly the values of ¢ with i € {3, 7}. By applying Step
4, we get the elliptic curves,

Y2 = 690007 + 257000X 2 — 76000, (104)
Y2 = 69000X; — 295000X % 4 76000, (105)
and
Y = 3781500X; + 14117000X7 — 4036000, (106)
Y2 = 3781500X{ — 16135000X 2 + 4036000, (107)
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fori = 3and i = 7, respectively. From the Magma function SIntegralljunggrenPoints (),
we obtain no solutions to these curves. Following the same techniques on (97)—(101),
we obtain:

(Li7Lj7L/€) € {(17171)v (1,4,7)}, (Li7Lijk?) € {(1>17 1)7 (17377)}7
(Li’Lj7Lk) € {(17 1, 1)7 (1a47 11)}a (LivLijk) € {(L 1, 1)7 (1a 1»4)},
and (L;, L;, Ly) € {(1,1,1),(1,1,4)},

as solutions to (97), (98), (99), (100) and (101), respectively. From the above solution,

we notice that (96)—(101) contain solutions, and by permuting these solutions, we ob-
tain solutions to (12) as follows:

(L;, L, Ly) € {(1,1,1),(1,7,3),(1,7,11), (4,1,1), (4,1,7), (4,11, 1) }.

Case 6: If (A, B,C, D) = (7,2,14, 14). The distinct equations derived (13) are:

7L} +2L7 +14L; = 14L;L; Ly, + 1, (108)
2L7 4+ 7L3 + 14L} = 14L;L; Ly, + 1, (109)
7L} +14L% 4 2L7 = 14L;L; Ly, + 1, (110)
14L7 +7L3 + 2L} = 14L; L; Ly, + 1, (111)
14L7 +2L3 + 7L} = 14L; L; Ly, + 1, (112)
2L7 + 14L% + 7TL{ = 14L;L; Ly, + 1, (113)

where, 1 <4 < j < k. From Theorem 3.1, we get that: < 13 and k < j+22inall (108)-
(113). Furthermore, we get thati € {1,2} in (108) and (110). Also ¢ € {1,3,7,13} in
(111) and (112). But, for (109) and (113) have no integer solutions y and z in which
(109) and (113) are satisfied. Using Step 4 leads to (108)-(113) have no solutions of
the form (L;, L;, Ly). So, (13) has no solution of the form (L;, L;, Ly) with 4, j, k > 1.

Therefore, Theorem 3.2 is completely proved.

4 Conclusion

As the Jin-Schmidt equation has infinitely many solutions in positive integers, the result of this
paper implies that this equation has a finite number of solutions in the sequence of Lucas numbers.
This result will give a deep insight in the study of Diophantine approximations, as the solutions
of Markoff equation and its generalizations are connected to Diophantine approximations.
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