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Abstract

In this paper, we study the integer solutions of the following equation that is so called the Jin-
Schmidt equation,

AX2 +BY 2 + CZ2 = DXY Z + 1,

where (X,Y, Z) = (Li, Lj , Lk), with i, j, k ≥ 1 such that Li, Lj and Lk represent terms in the
Lucas sequence that is defined by the relation L0 = 2, L1 = 1, Ln+1 = Ln + Ln−1 with n ≥ 1.
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1 Introduction

Suppose that f is an equation with the variables x1, x2, . . . , xn and n ≥ 2, then,
f(x1, x2, . . . , xn) = 0,

is called a Diophantine equation if the unknowns are integers. Here, we recall some well-known
Diophantine equations, for example, the Fermat’s equation,

xn + yn = zn,

has no positive integer solutions x and y with n > 2. In fact, the elliptic curve equation is an
important Diophantine equation, that has the form,

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, . . . , a6 ∈ C and the discriminant ∆, is given by:
∆ = −γ2

2γ8 − 8γ3
4 − 27γ2

6 + 9γ2γ4γ6,

γ2 = a21 + 4a2,

γ4 = 2a4 + a1a3,

γ6 = a23 + 4a6,

γ8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.

The elliptic curve equation hasmany applications especially in cryptography and other fields in
mathematics and sciences as itwas applied byAl-Saffar in [1, 2]. Anotherwell knownDiophantine
equation is known as the Markoff equation, that has the form,

X2 + Y 2 + Z2 = 3XY Z, (1)
where X , Y and Z are positive integers, with X ≤ Y ≤ Z. This equation were studied by the
scientist Markoff in the year of 1879–1880 [11, 12] as he found that the set of its solution is as
follows:

(X,Y, Z) ∈ {(1, 1, 1), (X,Z, 3XZ − Y ), (Y,Z, 3Y Z −X)}.

This set gives an infinite number of solutions, called Markoff triples. Markoff showed that there is
one-to-one correspondence between the Markoff triples and the indefinite quadratic forms with
minimal greater than 1

3

√
∆1, where∆1 is the discriminant of the indefinite quadratic forms. This

equation was also expanded and studied by the scientist Rosenberger [14] in 1979, which has the
form,

AX2 +BY 2 +BZ2 = DXY Z, (2)
where

(A,B,C,D) ∈ {(1, 2, 3, 6), (1, 1, 1, 3), (1, 1, 1, 1), (1, 1, 2, 2), (1, 1, 5, 5), (1, 1, 2, 4)},

with A,B,C,D ∈ N and gcd(A,B) = gcd(A,C) = gcd(C,D) = 1 and A,B,C \ D. Rosenberger
named this equation as Markoff-Rosenberger equation and showed that it has infinitely many so-
lutions. After that, the scientists Jin and Schmidt studied the following expansion of the Markoff-
Rosenberger equation (called by the Jin-Schmidt equation) in 2001 [8] such that X,Y, Z ∈ N :

AX2 +BY 2 + CZ2 = DXY Z + 1, (3)
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where they noticed that (3) has infinitely many solutions only with,

(A,B,C,D) ∈ {(2, 1, 2, 2), (2, 2, 3, 6), (3, 1, 6, 6), (5, 1, 5, 5), (6, 10, 15, 30), (7, 2, 14, 14), (1,m,m, 2m)},

where m is positive integer. In case of (A,B,C,D) = (2, 2, 3, 6), the equation has many appli-
cations. For example, it is connected to the constant for quaternions and constants for complex
numbers on the circle

{
t ∈ C | |t| = 1√

2

}
the field Q(√−3). In fact, recently many authors have

made Diophantine equations more interesting by studying their solutions in special linear recur-
rence sequences, that are defined as follows.

Assume that {Wn} is a sequence of the form,

Wn+d = a1Wn+d−1 + a2Wn+d−2 + . . .+ adWn, (4)

for all n ≥ 0 and a1, a2, . . . , ad ∈ Cwith ad ̸= 0 (where d is the order of the sequence).

The sequence (4) is called a binary linear recurrence sequence if d = 2, and it is also called a
ternary linear recurrence sequence if d = 3. An example of a binary linear recurrence sequences
is the Fibonacci sequence that is defined by,

Fn = Fn−1 + Fn−2,

with n ≥ 2, F0 = 0, F1 = 1. For all n ≥ 0, the terms of {Fn} can be obtained by the following
Binet’s formula:

Fn =
αn − βn

α− β
, where (α, β) =

(
1 +

√
5

2
,
1−

√
5

2

)
.

Note that α is called the golden number and β =
−1

α
. Another example of a binary linear recur-

rence sequence is the Lucas sequence that is defined by,

Ln = Ln−1 + Ln−2,

where L0 = 2, L1 = 1, and n ≥ 2. The terms of {Ln} can be obtained by thy Binet’s formula [13]:

Ln = αn + βn, ∀n ≥ 0. (5)

The terms of Lucas sequence satisfy the identity,

αn−1 ≤ Ln ≤ αn+1 holds for all n ≥ 1. (6)

The terms of {Fn} and {Ln} satisfy the equation,

L2
k = 5F 2

k ± 4. (7)

In the late of 19th century, the French scientist, Edouard Anatole Lucas [10] around the year 1842–
1891 introduced the Lucas sequence, which was named after him. The Lucas sequence is consid-
ered as the Fibonacci sequence except with different initials. They both are represented by the
same golden ratio α =

1 +
√
5

2
. Through this relationship, it becomes clear that both sequences

are linked by common properties. This sequence has a great application in the Lucas-Lehmer test,
that is used to discover and verify large prime numbers [3].
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Awell known example of the ternary linear recurrence sequences is so called by the Tribonacci
sequence that’s defined by,

Tn = Tn−1 + Tn−2 + Tn−3,

where T0 = 0, T1 = T2 = 1 for all n ≥ 3.

Indeed, the solutions to Diophantine equations in linear recurrence sequences is the main of
interest for many researchers. In the following, we recall some such results starting with the result
of Hashim [5] in which he solved the following equation completely:

1

Vn(P2, Q2)
=

∞∑
k=1

Vk−1(P1, Q1)

xk
,

where {Vn(P,Q)} denotes the Lucas sequence of the second kind for certain nonzero relatively
prime integers P and Q. Also, Hashim and Tengely [6] solved certain Diophantine equations
represented by reciprocals of Lucas sequences.

An important example of these interesting studies concerning Markoff equation and its gen-
eralization was initiated in 2018 by Luca and Srinivasan [9] for studying the relationship be-
tween Diophantine equations and linear recurrence sequences by determining the solutions of
the Markoff equation in Fibonacci sequence. Namely, they determined the solutions of (1) where
X , Y , and Z belong to the Fibonacci sequence.

Another interesting study was given by Tengely [16] in 2020 in which he investigated the so-
lutions of (2) where the unknowns are Fibonacci numbers. One more important study was given
by Hashim and Tengely [7] in 2020 in which they investigated the solutions of (3), where X , Y
and Z are terms in Fibonacci numbers and

(A,B,C,D) ∈ T = {(2, 2, 3, 6), (2, 1, 2, 2), (3, 1, 6, 6), (5, 1, 5, 5), (6, 10, 15, 30), (7, 2, 14, 14)}.

In this article, we study the solutions of (3), (namely the Jin-Schmidt equation) where
(X,Y, Z) = (Li, Lj , Lk) with i, j, k ≥ 1. That would be studying the solutions of the following
equations:

2L2
i + 2L2

j + 3L2
k = 6LiLjLk + 1, (8)

2L2
i + L2

j + 2L2
k = 2LiLjLk + 1, (9)

3L2
i + L2

j + 6L2
k = 6LiLjLk + 1, (10)

5L2
i + L2

j + 5L2
k = 5LiLjLk + 1, (11)

6L2
i + 10L2

j + 15L2
k = 30LiLjLk + 1, (12)

7L2
i + 2L2

j + 14L2
k = 14LiLjLk + 1, (13)

with i, j, k ≥ 1.

2 Main Approach

In this section, we present the main approach for solving the Jin-Schmidt equation (3) com-
pletely, where (X,Y, Z) = (Li, Lj , Lk)with i, j, k ≥ 1. Our main approach is based on solving the
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Jin-Schmidt equation for each (A,B,C,D) ∈ T (i.e (8)–(13)) by considering all the possible cases
X ≤ Y ≤ Z, X ≤ Z ≤ Y , Y ≤ X ≤ Z, Y ≤ Z ≤ X , Z ≤ X ≤ Y , Z ≤ Y ≤ X . Solving the Jin-
Schmidt equation completely at certain (A,B,C,D) requires solving it at all the casesX ≤ Y ≤ Z,
X ≤ Z ≤ Y , Y ≤ X ≤ Z, Y ≤ Z ≤ X , Z ≤ X ≤ Y , Z ≤ Y ≤ X , where (X,Y, Z) = (Li, Lj , Lk)
with i, j, k ≥ 1. In fact, without loss of generality, the condition (Li ≤ Lj ≤ Lk) with i, j, k ≥ 1
means i ≤ j ≤ k. So, if we first obtain the solutions of the equation,

AL2
i +BL2

j + CL2
k = DLiLjLk + 1, (14)

with (k ≥ j ≥ i ≥ 1), then for simplicity, the other cases are solved by considering the latter
equationwith permuting the components of the first three components in (A,B,C,D). So, the first
step is obtaining all the distinct equations of (3) by the permutation of the first three components
in each of the tuples (A,B,C,D) ∈ T . We denote each of these distinct equation by,

aL2
i + bL2

j + cL2
k = dLiLjLk + 1, (15)

with 1 ≤ i ≤ j ≤ k.

In the following, we give the main steps for determining the solution (Li, Lj , Lk)with 1 ≤ i ≤
j ≤ k of (15).

Step 1: We determine an upper bound for i in (15). We reformulate it as the following:

cLk − dLiLj = −
aL2

i + bL2
j

Lk
+

1

Lk
. (16)

By substituting (5) in Li, Lj , and Lk in (16), we get that,

cαk − dαi+j = −
aL2

i + bL2
j

Lk
+

1

Lk
− cβk + d(αiβj + αjβi + βi+j). (17)

From inequality (6) and 1 ≤ i ≤ j ≤ k; (or, 1 ≤ Li ≤ Lj ≤ Lk), we get the inequality,∣∣∣∣∣−aL2
i + bL2

j

Lk

∣∣∣∣∣ ≤ (a+ b)
L2
j

Lk
≤ (a+ b)α2j−k ≤ (a+ b)αj , (18)∣∣∣∣ 1Lk

∣∣∣∣ ≤ 1 < αj , (19)∣∣−cβk
∣∣ = ∣∣cα−k

∣∣ ≤ cα−j ≤ cαj , (20)∣∣d(αiβj + αjβi + βi+j)
∣∣ ≤ d(2αj + 1) ≤ 3dαj . (21)

Taking the absolute values to (17) and plugging (18)–(21) into the right hand side of
(17), we get that, ∣∣cαk − dαi+j

∣∣ < (1 + a+ b+ c+ 3d)αj . (22)

Multiplying (22) with 1

cαi+j
leads to,∣∣∣∣αk−i−j − d

c

∣∣∣∣ < h

αi
, (23)

such that h =
1

c
(1 + a+ b+ c+ 3d). We assume that,

min
n∈Z

∣∣∣∣αn − d

c

∣∣∣∣ = B1 > 0,
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so, inequality (23) will be,

αi <
h

B1
.

Hence, we get the upper bound of i as follows,

i ≤
⌊ ln( h

B1
)

ln(α)

⌋
= l, (24)

where l is a positive integer.
Step 2: We next obtain for k − j in (15) an upper bound. Since the first three components of

every tuple (a, b, c, d) of (15) are obtained from the permutations of (A,B,C) in the
tuples of the set T . As 15 ≥ a, b, c ≥ 1 and 30 ≥ d = D ≥ 1, then d/c ∈ {1, 2, 3, 5, 6, 7}
and this implies that h < 117. Hence, from (23) we have that,∣∣∣∣∣∣αk−i−j

∣∣− ∣∣∣∣dc
∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣αk−i−j − d

c

∣∣∣∣ < 117

α
< 72.31, as i ≥ 1.

Then, ∣∣αk−i−j
∣∣ < 72.31 +

∣∣∣∣dc
∣∣∣∣ < 72.31 + 7 < 79.31, as d/c ≤ 7,

which gives that,

k − j < i+
ln(79.31)

ln(α)
< l + 10.

As i ≤ l, we obtain that,

k ≤ j + l + 9. (25)

Step 3: We reduce the number of the values of i ∈ [1, l] in (15). This is achieved by determining
the values of i, with which the following equation has solutions for y and z,

aL2
i + by2 + cz2 − dLiyz − 1 = 0,

by using the SageMath software’s function solve_ Diophantine() [15].
Step 4: Finally, for each i remained from Step 3, we investigate the corresponding values of j

and k (with j ≤ k ≤ j + I + 9) with which (15) is satisfied. That would be done by
firstly writing (15) as follows:

bL2
j − sLj + w = 0, (26)

such that s = dLiLk and w = aL2
i + cL2

k − 1. Also, identity (7) can be written as,

(5Fk)
2 = 5L2

k ± 20. (27)

Because (26) is a quadratic equation, we solve it as follows:

Lj =
s±

√
s2 − 4bw

2b
,

which can be written as,

(2bLj − s)2 = s2 − 4bw. (28)
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Multiplications of (27) with (28) gives the equation,
Y 2
1 = (5X2

1 ± 20)(d2L2
iX

2
1 − 4b(aL2

i + cX2
1 − 1)), (29)

withX1 = Lk and Y1 = 5Fk(2bLj − dLiLk). Equation (29) is an elliptic curve equation
that can be solved using the Magma software [4] with the function
SIntegralLjunggrenPoints(). Indeed, (29) can be written in the form,

Y 2
1 = A1X

4
1 +B1X

2
1 + C. (30)

So, to calculate the points of (30), we use the Magma software with the function
SIntegralLjunggrenPoints([1, A1, B1, C1], []).

From every obtained solution (Li, Lj , Lk) of (15), we acquire the corresponding solutions
(X,Y, Z) = (Li, Lj , Lk) of (14) by comparing the positions of the components (a, b, c, d) and
(A,B,C,D), respectively.

3 Main Results

Suppose that S is the set of all distinct tuples obtained by the permutation of componentsA,B
and C in each of the tuples of T .
Theorem 3.1. If (a, b, c, d) ∈ S and,

B1 = min
I∈Z

∣∣∣∣αI − d

c

∣∣∣∣ ̸= 0,

then B1 ≥ 0.145. Moreover, if X = Li, Y = Lj and Z = Lk with 1 ≤ i ≤ j ≤ k is a solution of (3),
then i ≤ 13 and j ≤ k ≤ j + 22.

Proof. At the beginning, we want to prove the value of B1 ≥ 0.145. From the set S, we get
d/c ∈ {1, 2, 3, 5, 6, 7}. In case of I = 0 and B1 ̸= 0, we have that d/c ∈ {2, 3, 4, 5, 6, 7}. Therefore,
B1 ≥ 1. Now, we assume that I ≤ −1, then αI ≤ α−1 =

2

1 +
√
5
. So B1 ≥ 0.381. Also, if I ≥ 5,

then α5 ≥ 11.09. Therefore, B1 ≥ 4.09. If I = 1, then B1 = minI=1

∣∣∣∣α1 − d

c

∣∣∣∣ ≥ ∣∣α1 − 2
∣∣ ≥ 0.381.

Now, if I = 2, then B1 = minI=2

∣∣∣∣α2 − d

c

∣∣∣∣ ≥ ∣∣α2 − 3
∣∣ ≥ 0.381. Also, if I = 3, then

B1 = minI=3

∣∣∣∣α3 − d

c

∣∣∣∣ ≥ ∣∣α3 − 5
∣∣ ≥ 0.763. Also, for I = 4, we get

B1 = minI=4

∣∣∣∣α4 − d

c

∣∣∣∣ ≥ ∣∣α4 − 7
∣∣ ≥ 0.145. Based on the above and for all I ∈ Z, then

B1 = minI∈Z

∣∣∣∣αI − d

c

∣∣∣∣ ≥ ∣∣α4 − 7
∣∣ ≥ 0.145. Now, we want to prove the last part of the Theorem.

Using the value of B1 ≥ 0.145 in inequality (24), we get the following:

i ≤

∣∣∣∣∣∣∣∣
ln

(
117

0.145

)
ln(α)

∣∣∣∣∣∣∣∣ < 14.

Therefore, i ≤ 13. Finally, from the inequality (25) and the condition 1 ≤ i ≤ j ≤ k, we get
j ≤ k ≤ j + 22.
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Theorem 3.2. If (X,Y, Z) = (Li, Lj , Lk) is a solution of (3) where (A,B,C,D) ∈ T , the following
table shows the complete set of its solutions:

Table 1: The complete solutions of (3) in {Ln}.

Eq. (A,B,C,D) {(X,Y, Z)}
(8) (2, 2, 3, 6) {(1, 1, 1), (1, 7, 3), (1, 7, 11), (7, 1, 3), (7, 1, 11)}
(9) (2, 1, 2, 2) {}
(10) (3, 1, 6, 6) {(1, 4, 1), (1, 4, 3), (7, 4, 1)}
(11) (5, 1, 5, 5) {}
(12) (6, 10, 15, 30) {(1, 1, 1), (1, 7, 3), (1, 7, 11), (4, 1, 1), (4, 1, 7), (4, 11, 1)}
(13) (7, 2, 14, 14) {}

Proof. We follow the steps used in the Main Approach (Section 2) and Theorem 3.1 to obtain the
solutions of (3) given in Theorem 3.2 and prove them.

Case 1: Suppose that (A,B,C,D) = (2, 2, 3, 6). Using permutations of the coefficients of (8),
we get the equations:

2L2
i + 2L2

j + 3L2
k = 6LiLjLk + 1, (31)

2L2
i + 3L2

j + 2L2
k = 6LiLjLk + 1, (32)

3L2
i + 2L2

j + 2L2
k = 6LiLjLk + 1, (33)

where 1 ≤ i ≤ j ≤ k. From Theorem 3.1, we get that i ≤ 13 and k − j ≤ 22 in all
equations. Let us consider (31). We want to find (Li, Lj , Lk) with 1 ≤ i ≤ 13 and
j ≤ k ≤ j + 22 with which (31) is satisfied. We first follow Step 3 for eliminating the
values of i to get that i ∈ {1, 4} such that,

2L2
i + 2y2 + 3z2 − 6Liyz − 1 = 0,

is solvable. If i = 1 and j ≤ k ≤ j + 22, then,

2L2
j − 6LkLj + 3L2

k + 1 = 0.

The latter equation is a quadratic equation with respect to j. Now, we follow Step 4, to
find the values of j. We first substitute the value of i = 1 and (a, b, c, d) = (2, 2, 3, 6) in
the elliptic curve (29) to get the values of k. Then, we get the values of j with
k ∈ {j, . . . , .j + 22}. For i = 1, we have the elliptic curves,

Y 2
1 = 60X4

1 + 200X2
1 − 160, (34)

Y 2
1 = 60X4

1 − 280X2
1 + 160. (35)

With the Magma function SIntegralLjunggrenPoints(), we solve the above equa-
tions. We are indeed interested in the values of X1 as X1 = Lk. For (34), we get that
X1 ∈ {±1,±2,±11}. But we notice that ±2,−1,−11 /∈ {Ln} for all n ≥ 1. For (35), we
get X1 ∈ {±2,±3}. Also ±2,−3 /∈ {Ln} for all n ≥ 1. Finally, from (34) and (35), we
get that Lk ∈ {1, 3, 11}. If Lk = 1, then k = 1. Now, we want to find the values of j
from the value of j ≤ k ≤ j + 22 as follows:

• If k = j, then j = 1. Therefore, (Li, Lj , Lk) = (L1, L1, L1) = (1, 1, 1) and this
triple satisfy (31).

1004



Q. N. Alabrahimi and H. R. Hashim Malaysian J. Math. Sci. 19(3): 997–1017(2025) 997 - 1017

• If j + 1 ≤ k ≤ j + 22, then j < 1, which contradicts 1 = i ≤ j ≤ k.
But if Lk = 3, then k = 2. Similarly, we get the values of j as follows:

• If k = j, then we get that j = 2. Therefore, (Li, Lj , Lk) = (L1, L2, L2) = (1, 3, 3)
and this triple does not satisfy (31).

• If k = j + 1, then j = 1. Hence, (Li, Lj , Lk) = (L1, L1, L2) = (1, 1, 3) and
(1, 1, 3) does not satisfy (31).

• Finally, if j+2 ≤ k ≤ j+22, then j < 1. This is not possible since 1 = i ≤ j ≤ k.
Lastly, if Lk = 11, then k = 5. Hence,

• If k = j, then j = 5. Thus, (Li, Lj , Lk) = (L1, L5, L5) = (1, 11, 11) and (31) is
not satisfied at this triple.

• If k = j + 1, then j = 4. Therefore, (Li, Lj , Lk) = (L1, L4, L5) = (1, 7, 11) and
this triple satisfy (31).

• If k = j + 2, then j = 3. Hence, (Li, Lj , Lk) = (L1, L3, L5) = (1, 4, 11) and
(1, 4, 11) does not satisfy (31).

• If k = j + 3, then j = 2. So, (Li, Lj , Lk) = (L1, L2, L5) = (1, 3, 11) and this
triple does not satisfy (31).

• If k = j + 4, then j = 1. Subsequently, (Li, Lj , Lk) = (L1, L1, L5) = (1, 1, 11)
and (31) does not hold at this triple.

• Finally, in case of j + 5 ≤ k ≤ j + 22, we get j < 1. This is not possible since
j ≥ i ≥ 1.

The same step can be applied in case of i = 4 with k ∈ {j, . . . , j + 22} such that j ≥ 4
(since 4 = i ≤ j ≤ k). By substituting the values of Li = L4 = 7 and
(a, b, c, d) = (2, 2, 3, 6) in (29), we get,

Y 2
1 = 8700X4

1 + 30920X2
1 − 15520, (36)

Y 2
1 = 8700X4

1 − 38680X2
1 + 15520, (37)

withX1 = Lk and Y1 = 5Fk(4Lj − 42Lk). For (36), we obtain thatX1 ∈ {±11}. We get
that X1 ∈ {±2,±3} for (37). But, we notice that ±2,±3,−11 /∈ {Ln} for all n ≥ 4 since
4 = i ≤ j ≤ k. Therefore, we have that only Lk = 11, then k = 5. Now, we investigate
the values of j with j ≤ k ≤ j + 22 as the following:

• If k = j, then j = 5. Hence, (Li, Lj , Lk) = (L4, L5, L5) = (7, 11, 11) and (31) is
not satisfied at this triple.

• If k = j + 1, then j = 4. However, (Li, Lj , Lk) = (L4, L4, L5) = (7, 7, 11) is not
satisfying (31).

• Finally, if k ∈ {j + 2, . . . , j + 22}, then j ≤ 3. It is not possible since j ≥ i = 4.
Now, we consider (32) and by Theorem 3.1, we obtain i ≤ 13 and k− j ≤ 22. We follow
Step 3 to eliminate the values of i. We obtain,

2L2
i + 3y2 + 2z2 − 6Liyz − 1 = 0,

is solvable only with i ∈ {1, 4}. Next, we follow Step 4 to get values of j and k. For
i = 1, we get the elliptic curves,

Y 2
1 = 60X4

1 + 180X2
1 − 240, (38)

Y 2
1 = 60X4

1 − 300X2
1 + 240. (39)

For the curve (38), the possible values of X1, that represent Lucas numbers are given
by X1 = 1. Also, with respect to the curve (39), we get that X1 ∈ {1, 7}. Therefore,
Lk ∈ {1, 7}. If Lk = 1, then k = 1. Now, we can find the values of j from j ≤ k ≤ j+22
as follows:
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• If k = j, then j = 1. Therefore, (Li, Lj , Lk) = (1, 1, 1) and this triple satisfy
(32).

• Finally, we get j < 1 in case of j+1 ≤ k ≤ j+22, then it is not possible because
1 = i ≤ j ≤ k.

Lastly, if Lk = 7, then k = 4. Hence,
• If k = j, then j = 4. Subsequently, (Li, Lj , Lk) = (L1, L4, L4) = (1, 7, 7) and

(1, 7, 7) does not satisfy (32).
• If k = j + 1, then j = 3. But, (Li, Lj , Lk) = (L1, L3, L4) = (1, 4, 7) this triple

does not satisfy (32).
• If k = j + 2, then j = 2. Therefore, (Li, Lj , Lk) = (L1, L2, L4) = (1, 3, 7) and

(32) is satisfied at this triple.
• If k = j + 3, then j = 1. Subsequently, (Li, Lj , Lk) = (L1, L1, L4) = (1, 1, 7)

and this triple does not satisfy (32).
• Finally, if j + 4 ≤ k = 4 ≤ j + 22, so j < 1. This is not possible because j ≥ 1.

Now, we get the following curves in case of i = 4:

Y 2
1 = 8700X4

1 + 28980X2
1 − 23280, (40)

Y 2
1 = 8700X4

1 − 40620X2
1 + 23280. (41)

For the curve (40), the possible values of X1, that represent Lucas numbers are given
by X1 = 1. For the curve (41), we get that X1 = 2. Therefore, Lk ∈ {1, 2}. which gives
that k ≤ 1, this is a contradiction as 4 = i ≤ j ≤ k. Then (32) has no solution when
i = 4.

Now,we study (33) and byTheorem3.1, we get that 1 ≤ i ≤ 13 and j ≤ k ≤ j+22. From
Step 3, we achieve that i ∈ {1, 2, 5}. Following the elliptic curve approach explained in
Step 4 in case of i = 1, we obtain the equation,

Y 2
1 = 100X4

1 + 320X2
1 − 320, (42)

Y 2
1 = 100X4

1 − 480X2
1 + 320, (43)

withX1 = Lk and Y1 = 5FK(4Lj − 12Lk). From (42) we get thatX1 ∈ {±1} and from
(43) we obtain that X1 ∈ {±2}. But −1,±2 /∈ {Ln} for all n ≥ 1. Therefore, we only
have X1 = Lk = 1, that gives k = 1. In the following, we investigate the values of j
such that j ≤ k ≤ j + 22.

• If k = j, then j = 1. Subsequently, (Li, Lj , Lk) = (1, 1, 1) is a solution to (33).
• In case of j + 1 ≤ k = 1 ≤ j + 22, then j < 1, which is not possible as j ≥ 1.

Similarly, for i = 2, we obtain the elliptic curves,

Y 2
1 = 1540X4

1 + 5120X2
1 − 4160, (44)

Y 2
1 = 1540X4

1 − 7200X2
1 + 4160. (45)

We have that X1 ∈ {±1} for (44) and X1 ∈ {±2,±7} for (45). We notice that only
7 ∈ {Ln} for all n ≥ 2. If Lk = 7, then k = 4. Now, we want to find the values of j from
j ≤ k ≤ j + 22 as follows:

• If k = j, then j = 4. We get that (Li, Lj , Lk) = (L2, L4, L4) = (3, 7, 7) and this
triple does not satisfy (33).

• If k = j + 1, then j = 3. Hence, (Li, Lj , Lk) = (L2, L3, L4) = (3, 4, 7) and
(3, 4, 7) does not satisfy (33).
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• If k = j + 2, then j = 2. Therefore, (Li, Lj , Lk) = (L2, L2, L4) = (3, 3, 7) and
(33) does not hold at this triple.

• Finally, if k ∈ {j + 3, . . . , j + 22}, then j ≤ 1. This is not possible because
2 = i ≤ j ≤ k.

If i = 5, using the same way to findX1 = Lk, we get thatX1 ∈ {±1,±2,±7}. We notice
that of these values of Lk lead to k < 5, and this is a contradiction since 5 = i ≤ j ≤ k.
Therefore, (33) has no solution.

By gathering all of the obtained solutions of (31)–(33) with permuting their compo-
nents so that they satisfy (8), we get the solutions of (8) as follows:

(Li, Lj , Lk) ∈ {(1, 1, 1), (1, 7, 3), (1, 7, 11), (7, 1, 3), (7, 1, 11)}.

Case 2: If (A,B,C,D) = (2, 1, 2, 2). We obtain the distinct equations for (9) by permuting the
coefficients of (9). That leads to the following equations:

2L2
i + L2

j + 2L2
k = 2LiLjLk + 1, (46)

L2
i + 2L2

j + 2L2
k = 2LiLjLk + 1, (47)

2L2
i + 2L2

j + L2
k = 2LiLjLk + 1, (48)

where, 1 ≤ i ≤ j ≤ k. From Theorem 3.1, we get that i ≤ 13 and j ≤ k ≤ j + 22 in all
of (46)–(48). Now, we consider the solutions of (46). By Step 3, we have that,

2L2
i + y2 + z2 − 2Liyz − 1 = 0,

can be solved with respect to y and z only with i = 3. By Step 4, we substitute
Li = L3 = 4 and (a, b, c, d) = (2, 1, 2, 2) in (29), we get that,

Y 2
1 = 280X4

1 + 500X2
1 − 2480, (49)

Y 2
1 = 280X4

1 − 1740X2
1 + 2480. (50)

Equation (49) has no integer solutions and X1 ∈ {±2} is the X-coordinate of the so-
lutions of (50). But, we notice that ±2 /∈ {Ln} for all n ≥ 1. Therefore, (46) has no
solution.

Also, we study the solutions (47). We follow Step 3 to eliminate the value of i. We have
that,

L2
i + 2y2 + 2z2 − 2Liyz − 1 = 0,

is solvable only with i = 2. Next, we follow Step 4 to get values of j and k. For i = 2,
we get the elliptic curves,

Y 2
1 = 100X4

1 + 80X2
1 − 1280, (51)

Y 2
1 = 100X4

1 − 720X2
1 + 1280. (52)

For the curve (51), the possible values ofX1, that represent Lucas numbers are given by
X1 = 4 and (52) has no Lucas numbers solutions. Therefore, we get that only Lk = 4,
then k = 3. Now, we want to find the values of j from j ≤ k ≤ j + 22 as follows:

• If k = j, then j = 3. So, (Li, Lj , Lk) = (L2, L3, L3) = (3, 4, 4) and (47) is not
satisfied at this triple.
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• If k = j + 1, then j = 2. Therefore, (Li, Lj , Lk) = (L2, L2, L3) = (3, 3, 4) and
(47) is not satisfied at this triple.

• If j + 3 ≤ k = 3 ≤ j + 22, then j ≤ 1, which is not possible since j ≥ 2.
Finally, we study the solutions of (48). By Step 3, we obtain that,

2L2
i + 2y2 + z2 − 2Liyz − 1 = 0,

has a solution only at i = 3. If i = 3, we get that the elliptic curves,

Y 2
1 = 280X4

1 − 120X2
1 − 4960, (53)

Y 2
1 = 280X4

1 − 2360X2
1 + 4960. (54)

Equation (53) has no integer solutions and X1 ∈ {±2 ± 3} is the X-coordinate of the
solutions of (54). But, we notice that ±2,±3 /∈ {Ln} for all n ≥ 3. Therefore, (48) has
no solution. In the end, we notice that (46)–(48) do not have solutions. Therefore, (9)
has no solution.

Case 3: If (A,B,C,D) = (3, 1, 6, 6). We obtain the distinct equations for (10) by permuting the
coefficients of (10). That leads to the following equations:

3L2
i + L2

j + 6L2
k = 6LiLjLk + 1, (55)

L2
i + 3L2

j + 6L2
k = 6LiLjLk + 1, (56)

L2
i + 6L2

j + 3L2
k = 6LiLjLk + 1, (57)

6L2
i + L2

j + 3L2
k = 6LiLjLk + 1, (58)

6L2
i + 3L2

j + L2
k = 6LiLjLk + 1, (59)

3L2
i + 6L2

j + L2
k = 6LiLjLk + 1, (60)

where, 1 ≤ i ≤ j ≤ k. From Theorem 3.1, we get that i ≤ 13 and k − j ≤ 22 in all
(55)–(60). Now, we study the solutions of (55). By Step 3, we get that,

3L2
i + y2 + 6z2 − 6Liyz − 1 = 0,

is solvable only at i ∈ {1, 4, 7}. By Step 4, if i = 1, we substitute i = 1 and
(a, b, c, d) = (3, 1, 6, 6) in (29), we get that,

Y 2
1 = 60X4

1 + 200X2
1 − 160, (61)

Y 2
1 = 60X4

1 − 280X2
1 + 160. (62)

We obtain thatX1 ∈ {±1,±2,±11} as solutions for (61) andX1 ∈ {±2,±3} as solutions
for (62). We notice that only 1, 3, 11 ∈ {Ln} for all n ≥ 2. If Lk = 1, then k = 1. Now,
we want to find the values of j from j ≤ k ≤ j + 22 as follows:

• If k = j, then j = 1. So, (Li, Lj , Lk) = (L1, L1, L1) = (1, 1, 1) and this triple
does not satisfy (55).

• In case of j + 1 ≤ k = 1 ≤ j + 22, we have that j < 1. This is not possible since
1 = i ≤ j ≤ k.

If Lk = 3, then k = 2. From j ≤ k ≤ j + 22, we get the values of j as follows:
• If k = j, then j = 2. So, (Li, Lj , Lk) = (L1, L2, L2) = (1, 3, 3), and (1, 3, 3) does

not satisfy (55).
• If k = j + 1, then j = 1. Therefore, (Li, Lj , Lk) = (L1, L1, L2) = (1, 1, 3) and

(55) does not hold at this triple.
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• If j + 2 ≤ k = 2 ≤ j + 22, then j < 1. It is not possible since 1 = i ≤ j ≤ k.
If Lk = 11, then k = 5. So, the values of j are obtained as follows:

• If k = j, then j = 5. So, (Li, Lj , Lk) = (L1, L5, L5) = (1, 11, 11) and this triple
does not satisfy (55).

• If k = j + 1, then j = 4. Therefore, (Li, Lj , Lk) = (L1, L4, L5) = (1, 7, 11) and
this triple does not satisfy (55).

• If k = j + 2, then j = 3. Thus, (Li, Lj , Lk) = (L1, L3, L5) = (1, 4, 11) and
(1,4,11) does not satisfy (55).

• If k = j + 3, then j = 2. However, (Li, Lj , Lk) = (L1, L2, L5) = (1, 3, 11) does
not satisfy (55).

• If k = j + 4, then j = 1. So, (Li, Lj , Lk) = (L1, L1, L5) = (1, 1, 11) and (55)
does not hold at this triple.

• If j + 5 ≤ k = 5 ≤ j + 22, then j < 1. It is not possible since j ≥ 1.
For i = 4, 7, we find that X1 = Lk ∈ {±1,±2} when i = 4, and X1 = Lk ∈ {±1,±2}
when i = 7. However, the corresponding values of Lk lead to k ≤ 1, and this is a con-
tradiction since 4, 7 = i ≤ j ≤ k. Then, (55) has no solutions at i = 4, 7.

Now, we consider the solutions of (56). By Step 3, we get that,

L2
i + 3y2 + 6z2 − 6Liyz − 1 = 0,

has solutions with i ∈ {1, 3}. If i = 1, we have the elliptic curves,

Y 2
1 = −180X4

1 − 720X2
1 , (63)

Y 2
1 = −180X4

1 + 720X2
1 . (64)

Equation (63) has no integer solutions, and X1 ∈ {±2} is the X-coordinate of the solu-
tions of (64). But, we notice that±2 /∈ {Ln} for all n ≥ 1, therefore, (56) has no solution
at i = 1.

For i = 3, we obtain the elliptic curves,

Y 2
1 = 2520X4

1 + 9180X2
1 − 3600, (65)

Y 2
1 = 2520X4

1 − 10980X2
1 + 3600. (66)

Equation (65) has no integer solutions and X1 ∈ {0,±2,±3} is the X-coordinate of the
solutions of (66). But, we notice that 0,±2,±3 /∈ {Ln} for all n ≥ 3. Therefore, (56)
has no solution when i = 3.

Now, we study the solutions of (57). We follow Step 3 to eliminate the values of i. We
obtain the equation,

L2
i + 6y2 + 3z2 − 6Liyz − 1 = 0,

is solvable only with i ∈ {1, 3}. Next, we follow Step 4 to get values of j and k. For
i = 1, we get the elliptic curves,

Y 2
1 = −180X4

1 − 144X2
1 , (67)

Y 2
1 = −180X4

1 + 144X2
1 . (68)
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Equations (67) and (68) have no integer solutions. Therefore, (57) has no solution
when i = 1.

Now, for i = 3, we get the elliptic curves,

Y 2
1 = 2520X4

1 + 216X2
1 − 1440, (69)

Y 2
1 = 2520X4

1 − 3816X2
1 + 1440. (70)

Using the same way to find X1 = Lk, we have that only X1 ∈ {±1}. For Lk = 1, so
k = 1. But, we noticed that k = 1. This is a contradiction as 3 = i ≤ j ≤ k. Therefore,
(57) has no solution when i = 3.

Also, we study the solutions of (58). We follow Step 3 to eliminate the values of i, we
obtain the equation,

6L2
i + y2 + 3z2 − 6Liyz − 1 = 0,

is solvable only with i ∈ {1, 2, 5, 7, 8}. Next, we follow Step 4 to get values of j and k.
For i = 1, we get the elliptic curves,

Y 2
1 = 120X4

1 + 380X2
1 − 400, (71)

Y 2
1 = 120X4

1 − 580X2
1 + 400. (72)

With the Magma function SIntegralLjunggrenPoints(), we solve the above equa-
tions. We are indeed interested in the values of X1 as X1 = Lk. For (34), we get that
X1 ∈ {±1,±5,±29} for (71) and X1 ∈ {0,±2,±3,±7} for (72). We notice that only
1, 3, 7, 29 ∈ {Ln} for all n ≥ 1. Therefore, Lk ∈ {1, 3, 7, 29}. If Lk = 1, then k = 1. Now,
we want to find the values of j from j ≤ k ≤ j + 22 as follows:

• If k = j, then j = 1. So, (Li, Lj , Lk) = (L1, L1, L1) = (1, 1, 1) does not satisfy
(58).

• In case of j+1 ≤ k ≤ j+22, then j < 1. This is not possible since 1 = i ≤ j ≤ k.
If Lk = 3, then k = 2. From j ≤ k ≤ j + 22, we get the values of j as follows:

• If k = j, then j = 2. Therefore, (Li, Lj , Lk) = (L1, L2, L2) = (1, 3, 3) and this
triple does not satisfy (58).

• If k = j + 1, then j = 1. Therefore, (Li, Lj , Lk) = (L1, L1, L2) = (1, 1, 3) and
this (1, 1, 3) does not satisfy (58).

• If j + 2 ≤ k ≤ j + 22, then j < 1. It is not possible since 1 = i ≤ j ≤ k.
If Lk = 7, then k = 4. So, the values of j are obtained as follows:

• If k = j, then j = 4. So, (Li, Lj , Lk) = (L1, L4, L4) = (1, 7, 7) which does not
satisfy (58).

• If k = j + 1, then j = 3. Therefore, (Li, Lj , Lk) = (L1, L3, L4) = (1, 4, 7) and
(1,4,7) satisfy (58).

• If k = j + 2, then j = 2. We obtain that (Li, Lj , Lk) = (L1, L2, L4) = (1, 3, 7)
and this triple does not satisfy (58).

• If k = j + 3, then j = 1. However, (Li, Lj , Lk) = (L1, L1, L4) = (1, 1, 7) does
not satisfy (58).

• If j + 4 ≤ k = 4 ≤ j + 22, then j < 1. This is not possible since 1 = i ≤ j ≤ k.
If Lk = 29, then k = 7. Now, we study the values of j :

• If k = j, then j = 7. So, (Li, Lj , Lk) = (L1, L7, L7) = (1, 29, 29) which does not
satisfy (58).
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• If k = j + 1, then j = 6. But, (Li, Lj , Lk) = (L1, L6, L7) = (1, 18, 29) does not
satisfy (58).

• If k = j + 2, then j = 5. Also, (Li, Lj , Lk) = (L1, L5, L7) = (1, 11, 29). This
triple does not satisfy (58).

• If k = j + 3, then j = 4. Therefore, (Li, Lj , Lk) = (L1, L4, L7) = (1, 7, 29) and
this triple does not satisfy (58).

• If k = j + 4, then j = 3. However, (Li, Lj , Lk) = (L1, L3, L7) = (1, 4, 29) does
not satisfy (58).

• If k = j + 5, then j = 2. Thus, (Li, Lj , Lk) = (L1, L2, L7) = (1, 3, 29) and this
triple does not satisfy (58).

• If k = j + 6, then j = 1. Therefore, (Li, Lj , Lk) = (L1, L1, L7) = (1, 1, 29) and
this triple does not satisfy (58).

• If j + 7 ≤ k = 7 ≤ j + 22, then j < 1. It is not possible since 1 = i ≤ j ≤ k.
Now, if i = 2, we get the elliptic curves,

Y 2
1 = 1560X4

1 + 5180X2
1 − 4240, (73)

Y 2
1 = 1560X4

1 − 7300X2
1 + 4240. (74)

For the curve (73), the possible values of X1, that represent Lucas numbers are given
by X1 = 1. Also, with respect to the curve (74), we get that X1 = 2. Therefore, we
notice that only Ln = 1 for all n ≥ 1. So, Lk = 1, then k = 1. But we noticed that k < 2.
This is a contradiction with 2 = i ≤ j ≤ k. Therefore, (58) has no solution when i = 2.

If i ∈ {5, 7, 8}, using the same way to findX1 = Lk, we get thatX1 ∈ {±1,±2} at i = 5,
X1 = ±2 at i = 7 and X1 ∈ {±2,±3} at i = 8. Therefore, we notice that these values of
Lk leads to k ≤ 2. But, this is a contradiction since 5 ≤ i ≤ j ≤ k.

Also, we study the solutions of (59). We follow Step 3 to eliminate the values of i. We
obtain the equation,

6L2
i + 3y2 + z2 − 6Liyz − 1 = 0,

is solvable only with i ∈ {1, 2, 5, 7, 8}. Next, we follow Step 4 to get values of j and k.
For i = 1, we get the elliptic curves,

Y 2
1 = 120X4

1 + 180X2
1 − 1200, (75)

Y 2
1 = 120X4

1 − 780X2
1 + 1200. (76)

By the Magma function SIntegralLjunggrenPoints(), we get that X1 = ±4 for (75)
and X1 = ±2 for (76). We notice that 4 ∈ {Ln} for all n ≥ 1. If Lk = 4, then k = 3.
Now, we want to find the values of j from j ≤ k ≤ j + 22 as follows:

• If k = j, then j = 3. So, (Li, Lj , Lk) = (L1, L3, L3) = (1, 4, 4) and this triple
does not satisfy (59).

• If k = j + 1, then j = 2. Therefore, (Li, Lj , Lk) = (L1, L2, L3) = (1, 3, 4) and
(1, 3, 4) does not satisfy (59).

• If k = j + 2, then j = 1. So, (Li, Lj , Lk) = (L1, L1, L3) = (1, 1, 4) and this triple
satisfy (59).

• If j + 3 ≤ k ≤ j + 22 then j < 1. It is not possible since 1 = i ≤ j ≤ k.
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If i = 2, we get the elliptic curves,

Y 2
1 = 1560X4

1 + 3060X2
1 − 12720, (77)

Y 2
1 = 1560X4

1 − 9420X2
1 + 12720. (78)

For (77), we get that X1 = ±4, and X1 = ±2 for (78). We notice that 4 ∈ {Ln} for all
n ≥ 1. If Lk = 4, then k = 3. Now, we want to find of values the j from j ≤ k ≤ j + 22
as follows:

• If k = j, then j = 3. So, (Li, Lj , Lk) = (L2, L3, L3) = (3, 4, 4) and this triple
does not satisfy (59).

• If k = j + 1, then j = 2. Therefore, (Li, Lj , Lk) = (L2, L2, L3) = (3, 3, 4) and
(3, 3, 4) does not satisfy (59).

• If k ∈ {j + 2, . . . , j + 22}, then j ≤ 1. This is not possible since 2 = i ≤ j ≤ k.
Finally, if i ∈ {5, 7, 8}, using the same way to find X1 = Lk, we get that X1 = ±2 at
i = 5, X1 = ±2 at i = 7 and X1 = ±2 at i = 8. But, ±2 /∈ {Ln} for all n ≥ 1. Therefore,
(59) has no solution when i ∈ {5, 7, 8}.

Also, we study the solutions of (60). We follow Step 3 to eliminate the values of i. We
obtain the equation,

3L2
i + 6y2 + z2 − 6Liyz − 1 = 0,

is solvable only with i ∈ {1, 2, 4, 7}. Next, we follow Step 4 to get values of j and k. For
i = 1, we get the elliptic curves,

Y 2
1 = 60X4

1 − 960, (79)
Y 2
1 = 60X4

1 − 480X2
1 + 960. (80)

By the Magma function SIntegralLjunggrenPoints(), we get thatX1 ∈ {±2,±4} for
(79) andX1 = ±2 for (80), we notice that only 4 ∈ {Ln} as n ≥ 1. If Lk = 4, then k = 3.
Now, we want to find the values of j from j ≤ k ≤ j + 22 as follows:

• If k = j, then j = 3. So, (Li, Lj , Lk) = (L1, L3, L3) = (1, 4, 4) and this triple
does not satisfy (60).

• If k = j + 1, then j = 2. Therefore, (Li, Lj , Lk) = (L1, L2, L3) = (1, 3, 4) and
this (1, 3, 4) satisfy (60).

• If k = j + 2, then j = 1. So, we have (Li, Lj , Lk) = (L1, L1, L3) = (1, 1, 4) and
this triple does not satisfy (60).

• If j + 3 ≤ k = 3 ≤ j + 22, then j < 1. It is not possible since 1 = i ≤ j.
Similarly, for i = 2, we obtain the elliptic curves,

Y 2
1 = 1500X4

1 + 2880X2
1 − 12480, (81)

Y 2
1 = 1500X4

1 − 9120X2
1 + 12480. (82)

Equation (81) has no integer solutions and X1 ∈ {±2} is the X-coordinate of the so-
lutions of (82). But, we notice that ±2 /∈ {Ln} for all n ≥ 1. Therefore, (60) has no
solution.

Finally, if i ∈ {4, 7}, using the sameway to findX1 = Lk, we get that onlyX1 ∈ {±2,±4}
for i = 4 and X1 = ±2 for i = 7. We get that only 4 ∈ {Ln} for all n ≥ 1. So, Lk = 4,
then k = 3. This is a contradiction with 4 = i ≤ j ≤ k. Therefore, (60) has no solution
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when i = 4, 7.

By gathering all of the obtained solutions of (55)–(60) with permuting their compo-
nents so that they satisfy (10), we get the solutions of (10) as follows:

(Li, Lj , Lk) ∈ {(1, 4, 1), (1, 4, 3), (7, 4, 1)}.

Case 4: If (A,B,C,D) = (5, 1, 5, 5). The distinct equations derived (11) are:

5L2
i + L2

j + 5L2
k = 5LiLjLk + 1, (83)

L2
i + 5L2

j + 5L2
k = 5LiLjLk + 1, (84)

5L2
i + 5L2

j + L2
k = 5LiLjLk + 1, (85)

where 1 ≤ i ≤ j ≤ k. From Theorem 3.1, we get that i ≤ 13 and j ≤ k ≤ j + 22 in all
(83)–(85). Now, we study the solutions of (83). By Step 3, we get that,

5L2
i + y2 + 5z2 − 5Liyz − 1 = 0,

is solvable only with i ∈ {1, 3, 4, 5}. By Step 4, if i = 1, we substitute Li = 1 and
(a, b, c, d) = (5, 1, 5, 5) in (29), we obtain that,

Y 2
1 = 25X4

1 + 20X2
1 − 320, (86)

Y 2
1 = 25X4

1 − 180X2
1 + 320. (87)

We obtain that X1 = ±4 for (86) and X1 = ±2 for (87). We notice that only Ln = 4
for all n ≥ 1. If Lk = 4, then k = 3. Now, we want to find all the values of j from
j ≤ k ≤ j + 22 as follows:

• If k = j, then j = 3. Therefore, (Li, Lj , Lk) = (L1, L3, L3) = (1, 4, 4) and this
triple does not satisfy (83).

• If k = j + 1, then j = 2. So, (Li, Lj , Lk) = (L1, L2, L3) = (1, 3, 4), and (1, 3, 4)
does not satisfy (83).

• If k = j + 2, then j = 1. However, (Li, Lj , Lk) = (L1, L1, L3) = (1, 1, 4) does
not satisfy (83).

• If j + 3 ≤ k ≤ j + 22, then j < 1. It is not possible since j ≥ 1.
If i ∈ {3, 4, 5}, using the same way to find X1 = Lk, we get that X1 ∈ {±1,±2} for
i = 3, X1 = ±2 for i = 4 and X1 = ±2 for i = 5. We notice that the values of Lk leads
to k ≤ 1. Therefore, this is a contradiction since 3 ≤ i ≤ j ≤ k. Therefore, (83) has no
solution when i ∈ {3, 4, 5}.

Next, we study the solutions of (84). We follow Step 3 to eliminate the values of i. We
obtain the equation,

L2
i + 5y2 + 5z2 − 5Liyz − 1 = 0,

is solvable with i ∈ {1, 3}. Next, we follow Step 4 to get values of j and k. For i = 1, we
get the elliptic curves,

Y 2
1 = −375X4

1 − 1500X2
1 , (88)

Y 2
1 = −375X4

1 + 1500X2
1 . (89)

Using the same way to find X1 = Lk, we get that (88) has no integer solutions, and
X1 = ±2 for (89). But, we notice that ±2 /∈ {Ln} for all n ≥ 1. Therefore, (84) has no
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solution when i = 1.

Now if i = 3, we obtain the elliptic curves,
Y 2
1 = 1500X4

1 + 4500X2
1 − 6000, (90)

Y 2
1 = 1500X4

1 − 7500X2
1 + 6000. (91)

We obtain that X1 = ±1 for (90) and X1 ∈ {±1,±2,±7} for (91). We notice that only
Lk = 7 as k ≥ 3. If Lk = 7, then k = 4. Now, we want to find the values of j from
j ≤ k ≤ j + 22 as follows:

• If k = j, then j = 4. So,(Li, Lj , Lk), (L3, L4, L4) = (4, 7, 7) and this (4, 7, 7) does
not satisfy (84).

• If k = j + 1, then j = 3. Therefore, (Li, Lj , Lk) = (L3, L3, L4) = (4, 4, 7) and
this triple does not satisfy (84).

• If k ∈ {j + 2, . . . , j + 22}, then j ≤ 2, which is not possible since 3 = i ≤ j ≤ k.
Finally, we study the solutions of (85). By Step 3 we get that equation,

5L2
i + 5y2 + z2 − 5Liyz − 1 = 0,

is solvable if i ∈ {1, 3, 4, 5}. Now, we follow Step 4. If i = 1, we substitute Li = L1 = 1
and (a, b, c, d) = (5, 5, 1, 5) in (29), we obtain that,

Y 2
1 = 25X4

1 − 300X2
1 − 1600, (92)

Y 2
1 = 25X4

1 − 500X2
1 + 1600. (93)

By the Magma function SIntegralLjunggrenPoints(), we get that X1 = ±4 for (92)
and X1 ∈ {±2,±4} for (93). We notice that only Ln = 4 for all n ≥ 1. Therefore, we
get that only Lk = 4, that implies k = 3. Now, we want to find the values of j from
j ≤ k ≤ j + 22 as follows:

• If k = j, then j = 3. We get that (Li, Lj , Lk) = (L1, L3, L3) = (1, 4, 4) and this
triple does not satisfy (85).

• If k = j + 1, then j = 2. Therefore, (Li, Lj , Lk) = (L1, L2, L3) = (1, 3, 4) which
does not satisfy (85).

• If k = j + 2, then j = 1. So, (Li, Lj , Lk) = (L1, L1, L3) = (1, 1, 4) and this
(1, 1, 4) does not satisfy (85).

• If j + 3 ≤ k ≤ j + 22, then j < 1. It is not possible since j ≥ 1.
Similarly, for i = 3, we obtain the elliptic curves,

Y 2
1 = 1900X4

1 − 300X2
1 − 31600, (94)

Y 2
1 = 1900X4

1 − 15500X2
1 + 31600. (95)

Equation (94) has no integer solutions and X1 ∈ {±2} is the only X-coordinate of the
solutions of (95). But, we notice that ±2 /∈ {Ln} for all n ≥ 1. Therefore, (85) has no
solution at i = 3.

If i ∈ {4, 5}, using the same way to find X1 = Lk, we get that X1 ∈ {±2,±4} for i = 4
and X1 = ±2 with i = 5. We notice that the values of Lk leads to k ≤ 3 and this is a
contradiction since 4 ≤ i ≤ j ≤ k. Hence, we conclude that (85) has no solution when
i ∈ {4, 5}.

As a result, we get that (83)–(85) do not have solutions. Therefore, (11) has no solution
in Lucas numbers.
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Case 5: If (A,B,C,D) = (6, 10, 15, 30). The distinct equations derived (12) are:

6L2
i + 10L2

j + 15L2
k = 30LiLjLk + 1, (96)

10L2
i + 6L2

j + 15L2
k = 30LiLjLk + 1, (97)

6L2
i + 15L2

j + 10L2
k = 30LiLjLk + 1, (98)

15L2
i + 6L2

j + 10L2
k = 30LiLjLk + 1, (99)

10L2
i + 15L2

j + 6L2
k = 30LiLjLk + 1, (100)

15L2
i + 10L2

j + 6L2
k = 30LiLjLk + 1, (101)

where 1 ≤ i ≤ j ≤ k. From Theorem 3.1, we get that i ≤ 13 and j ≤ k ≤ j + 22 in all
(96)–(101). Now, we study the solutions of (96) in detail and the remainder equations
are studied in the same way. So, the details of computations for determining the com-
plete set of solutions for these equations are omitted. We follow Step 3 to eliminate the
values of i. We get that,

6L2
i + 10y2 + 15z2 − 30Liyz − 1 = 0,

is solvable only with i ∈ {1, 3, 7}. Next, we follow Step 4 to get the values of j and k.
For i = 1, we obtain the elliptic curves,

Y 2
1 = 1500X4

1 + 5000X2
1 − 4000, (102)

Y 2
1 = 1500X4

1 − 7000X2
1 + 4000. (103)

We have that X1 ∈ {±1,±2,±11} for (102) and X1 ∈ {±2,±3} for (103). We notice
that only 1, 3, 11 ∈ {Ln} for all n ≥ 1. If Lk = 1, then k = 1. Now, we want to find the
values of j from j ≤ k ≤ j + 22 as follows:

• If k = j, then j = 1. Hence, (Li, Lj , Lk) = (L1, L1, L1) = (1, 1, 1) and this triple
satisfy (96).

• In case of j + 1 ≤ k = 1 ≤ j + 22, so j < 1. That is not possible since
1 = i ≤ j ≤ k.

If Lk = 3, then k = 2. From j ≤ k ≤ j + 22, we get that the values of j as follows:
• If k = j, then j = 2. But, (Li, Lj , Lk) = (L1, L2, L2) = (1, 3, 3) does not satisfy

(96).
• If k = j + 1, then j = 1. Therefore, (Li, Lj , Lk) = (L1, L1, L2) = (1, 1, 3) and

(96) does not hold at this triple.
• In case of j + 2 ≤ k ≤ j + 22, then j < 1. This is not possible since j ≥ 1.

If Lk = 11, then k = 5. In a similar way to done earlier, after determining the values of
j and k, we get no solutions to (96) other than the case where 5 = k = j + 1. Indeed,
here we get the solution (Li, Lj , Lk) = (L1, L4, L5) = (1, 7, 11). It remains to investigate
the values of j and k correspondingly the values of i with i ∈ {3, 7}. By applying Step
4, we get the elliptic curves,

Y 2
1 = 6900041 + 257000X2

1 − 76000, (104)
Y 2
1 = 69000X4

1 − 295000X2
1 + 76000, (105)

and

Y 2
1 = 3781500X4

1 + 14117000X2
1 − 4036000, (106)

Y 2
1 = 3781500X4

1 − 16135000X2
1 + 4036000, (107)
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for i = 3 and i = 7, respectively. From theMagma function SIntegralLjunggrenPoints(),
we obtain no solutions to these curves. Following the same techniques on (97)–(101),
we obtain:

(Li, Lj , Lk) ∈ {(1, 1, 1), (1, 4, 7)}, (Li, Lj , Lk) ∈ {(1, 1, 1), (1, 3, 7)},
(Li, Lj , Lk) ∈ {(1, 1, 1), (1, 4, 11)}, (Li, Lj , Lk) ∈ {(1, 1, 1), (1, 1, 4)},
and (Li, Lj , Lk) ∈ {(1, 1, 1), (1, 1, 4)},

as solutions to (97), (98), (99), (100) and (101), respectively. From the above solution,
we notice that (96)–(101) contain solutions, and by permuting these solutions, we ob-
tain solutions to (12) as follows:

(Li, Lj , Lk) ∈ {(1, 1, 1), (1, 7, 3), (1, 7, 11), (4, 1, 1), (4, 1, 7), (4, 11, 1)}.

Case 6: If (A,B,C,D) = (7, 2, 14, 14). The distinct equations derived (13) are:

7L2
i + 2L2

j + 14L2
k = 14LiLjLk + 1, (108)

2L2
i + 7L2

j + 14L2
k = 14LiLjLk + 1, (109)

7L2
i + 14L2

j + 2L2
k = 14LiLjLk + 1, (110)

14L2
i + 7L2

j + 2L2
k = 14LiLjLk + 1, (111)

14L2
i + 2L2

j + 7L2
k = 14LiLjLk + 1, (112)

2L2
i + 14L2

j + 7L2
k = 14LiLjLk + 1, (113)

where, 1 ≤ i ≤ j ≤ k. From Theorem 3.1, we get that i ≤ 13 and k ≤ j+22 in all (108)–
(113). Furthermore, we get that i ∈ {1, 2} in (108) and (110). Also i ∈ {1, 3, 7, 13} in
(111) and (112). But, for (109) and (113) have no integer solutions y and z in which
(109) and (113) are satisfied. Using Step 4 leads to (108)–(113) have no solutions of
the form (Li, Lj , Lk). So, (13) has no solution of the form (Li, Lj , Lk)with i, j, k ≥ 1.

Therefore, Theorem 3.2 is completely proved.

4 Conclusion

As the Jin-Schmidt equation has infinitely many solutions in positive integers, the result of this
paper implies that this equation has a finite number of solutions in the sequence of Lucas numbers.
This result will give a deep insight in the study of Diophantine approximations, as the solutions
of Markoff equation and its generalizations are connected to Diophantine approximations.

Acknowledgement The authors are grateful to anonymous referees for their remarks and sugges-
tions that helped improve the manuscript.

Conflicts of Interest The authors declare that there no conflict of interest.

1016



Q. N. Alabrahimi and H. R. Hashim Malaysian J. Math. Sci. 19(3): 997–1017(2025) 997 - 1017

References

[1] N. Al Saffar, H. Alkhayyat & K. Obaid (2024). A novel image encryption algorithm involving
a logistic map and a self-invertible matrix. Malaysian Journal of Mathematical Sciences, 18(1),
107–126. https://doi.org/10.47836/mjms.18.1.07.

[2] N. F. H. Al Saffar &M. R. M. Said (2015). Speeding up the elliptic curve scalar multiplication
using the window-w non adjacent form. Malaysian Journal of Mathematical Sciences, 9(1), 91–
110.

[3] R. Baillie, A. Fiori & S. Wagstaff Jr (2021). Strengthening the Baillie-PSW primality test.
Mathematics of Computation, 90(330), 1931–1955. https://doi.org/10.1090/mcom/3616.

[4] W. Bosma, J. Cannon & C. Playoust (1997). TheMagma algebra system I: The user language.
Journal of Symbolic Computation, 24(3–4), 235–265. https://doi.org/10.1006/jsco.1996.0125.

[5] H. R. Hashim (2021). Curious properties of generalized Lucas numbers. Boletín de la Sociedad
Matemática Mexicana, 27, Article ID: 76. https://doi.org/10.1007/s40590-021-00391-7.

[6] H. R.Hashim&S. Tengely (2018). Representations of reciprocals of Lucas sequences.Miskolc
Mathematical Notes, 19(2), 865–872. https://doi.org/10.18514/MMN.2018.2520.

[7] H. R. Hashim & S. Tengely (2020). Solutions of a generalized Markoff equation in Fibonacci
numbers. Mathematica Slovaca, 70(5), 1069–1078. https://doi.org/10.1515/ms-2017-0414.

[8] Y. Jin & A. L. Schmidt (2001). A Diophantine equation appearing in Diophantine approxi-
mation. Indagationes Mathematicae, 12(4), 477–482. https://doi.org/10.1016/S0019-3577(01)
80036-7.

[9] F. Luca & A. Srinivasan (2018). Markov equation with Fibonacci components. The Fibonacci
Quarterly, 56(2), 126–129. https://doi.org/10.1080/00150517.2018.12427706.

[10] E. Lucas (1878). Théorie des fonctions numériques simplement périodiques.American Journal
of Mathematics, 1(2), 184–196. https://doi.org/10.2307/2369308.

[11] A. Markoff (1879). Sur les formes quadratiques binaires indéfinies. Mathematische Annalen,
15(3), 381–406. https://doi.org/10.1007/BF02086269.

[12] A. Markoff (1880). Sur les formes quadratiques binaires indéfinies. Mathematische Annalen,
17(3), 379–399. https://doi.org/10.1007/BF01446234.

[13] P. Ribenboim (2000). My Numbers, My Friends: Popular Lectures on Number Theory. Springer
Science & Business Media, New York. https://doi.org/10.1007/b98892.

[14] G. Rosenberger (1979). Über die Diophantische Gleichung ax2+by2+cz2 = dxyz. Journal für
die Reine und Angewandte Mathematik, 1979(305), 122–125. https://doi.org/doi.org/10.1515/
crll.1979.305.122.

[15] W. A. Stein et al. Sage Mathematics Software (Version 9.0). The Sage Development Team 2020.
http://www.sagemath.org.

[16] S. Tengelys (2020). Markoff-Rosenberger triples with Fibonacci components. Glasnik matem-
atički, 55(1), 29–36. https://doi.org/10.3336/gm.55.1.03.

1017

https://doi.org/10.47836/mjms.18.1.07
https://doi.org/10.1090/mcom/3616
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1007/s40590-021-00391-7
https://doi.org/10.18514/MMN.2018.2520
https://doi.org/10.1515/ms-2017-0414
https://doi.org/10.1016/S0019-3577(01)80036-7
https://doi.org/10.1016/S0019-3577(01)80036-7
https://doi.org/10.1080/00150517.2018.12427706
https://doi.org/10.2307/2369308
https://doi.org/10.1007/BF02086269
https://doi.org/10.1007/BF01446234
https://doi.org/10.1007/b98892
https://doi.org/doi.org/10.1515/crll.1979.305.122
https://doi.org/doi.org/10.1515/crll.1979.305.122
http://www.sagemath.org
https://doi.org/10.3336/gm.55.1.03

	Introduction
	Main Approach
	Main Results
	Conclusion

